Abstract
Western blot analysis showed that a monoclonal antibody against recombinant mouse CD14 (mCD14), designated rmC5-3, specifically reacted with mouse macrophage cell line J774, but not myeloma cell line NS1. Fluorographic and immunocytochemical analysis demonstrated specific binding of rmC5-3 with mouse resident macrophages, inflammatory monocytes and neutrophils, and macrophage cell lines. Immunohistochemical staining using rmC5-3 showed that CD14-positive Kupffer cells (KC) were small in number in the liver in nonstimulated mice. The number of stained KC, which were rich in the midzonal and periportal regions, gradually increased with time after intraperitoneal injection of lipopolysaccharide (LPS), peaked 6 h after injection, and returned to normal by 20 h after injection. Staining intensity over time was proportional to the number of KC. A slight increase in mCD14 expression was observed in peritoneal macrophages 2 h after LPS administration in vivo using flow cytometric analysis. mCD14 mRNA became detectable at 1 h after the intraperitoneal injection of LPS (20 micrograms/mice), and the level dramatically increased with time, peaking at 3 h, and sharply dropped at 6 h. The resident peritoneal macrophages demonstrated a constitutively high mCD14 mRNA expression, which slightly increased 2 h after LPS (100 ng/ml) stimulation in vitro. The level of mCD14 expression in macrophages did not increase after intraperitoneal injection of LPS (20 micrograms/mice).
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayala A., Perrin M. M., Wang P., Ertel W., Chaudry I. H. Hemorrhage induces enhanced Kupffer cell cytotoxicity while decreasing peritoneal or splenic macrophage capacity. Involvement of cell-associated tumor necrosis factor and reactive nitrogen. J Immunol. 1991 Dec 15;147(12):4147–4154. [PubMed] [Google Scholar]
- Bazil V., Strominger J. L. Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol. 1991 Sep 1;147(5):1567–1574. [PubMed] [Google Scholar]
- Bouwens L., Baekeland M., Wisse E. Importance of local proliferation in the expanding Kupffer cell population of rat liver after zymosan stimulation and partial hepatectomy. Hepatology. 1984 Mar-Apr;4(2):213–219. doi: 10.1002/hep.1840040208. [DOI] [PubMed] [Google Scholar]
- Chao W., Liu H., Hanahan D. J., Olson M. S. Platelet-activating factor-stimulated protein tyrosine phosphorylation and eicosanoid synthesis in rat Kupffer cells. Evidence for calcium-dependent and protein kinase C-dependent and -independent pathways. J Biol Chem. 1992 Apr 5;267(10):6725–6735. [PubMed] [Google Scholar]
- Chensue S. W., Terebuh P. D., Remick D. G., Scales W. E., Kunkel S. L. In vivo biologic and immunohistochemical analysis of interleukin-1 alpha, beta and tumor necrosis factor during experimental endotoxemia. Kinetics, Kupffer cell expression, and glucocorticoid effects. Am J Pathol. 1991 Feb;138(2):395–402. [PMC free article] [PubMed] [Google Scholar]
- Decker K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem. 1990 Sep 11;192(2):245–261. doi: 10.1111/j.1432-1033.1990.tb19222.x. [DOI] [PubMed] [Google Scholar]
- Ding A., Nathan C. Analysis of the nonfunctional respiratory burst in murine Kupffer cells. J Exp Med. 1988 Mar 1;167(3):1154–1170. doi: 10.1084/jem.167.3.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estler H. C., Grewe M., Gaussling R., Pavlovic M., Decker K. Rat tumor necrosis factor-alpha. Transcription in rat Kupffer cells and in vitro posttranslational processing based on a PCR-derived cDNA. Biol Chem Hoppe Seyler. 1992 May;373(5):271–281. doi: 10.1515/bchm3.1992.373.1.271. [DOI] [PubMed] [Google Scholar]
- Firestein G. S., Zvaifler N. J. Down regulation of human monocyte differentiation antigens by interferon gamma. Cell Immunol. 1987 Feb;104(2):343–354. doi: 10.1016/0008-8749(87)90036-0. [DOI] [PubMed] [Google Scholar]
- Gandhi C. R., Stephenson K., Olson M. S. A comparative study of endothelin- and platelet-activating-factor-mediated signal transduction and prostaglandin synthesis in rat Kupffer cells. Biochem J. 1992 Jan 15;281(Pt 2):485–492. doi: 10.1042/bj2810485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock W. W., Zola H., Atkins R. C. Antigenic heterogeneity of human mononuclear phagocytes: immunohistologic analysis using monoclonal antibodies. Blood. 1983 Dec;62(6):1271–1279. [PubMed] [Google Scholar]
- Kawada N., Mizoguchi Y., Kobayashi K., Monna T., Morisawa S., Ueda N., Omoto Y., Takahashi Y., Yamamoto S. Possible induction of fatty acid cyclo-oxygenase in lipopolysaccharide-stimulated rat Kupffer cells. Gastroenterology. 1992 Sep;103(3):1026–1033. doi: 10.1016/0016-5085(92)90039-2. [DOI] [PubMed] [Google Scholar]
- Köhler G., Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. doi: 10.1002/eji.1830060713. [DOI] [PubMed] [Google Scholar]
- Lepay D. A., Nathan C. F., Steinman R. M., Murray H. W., Cohn Z. A. Murine Kupffer cells. Mononuclear phagocytes deficient in the generation of reactive oxygen intermediates. J Exp Med. 1985 May 1;161(5):1079–1096. doi: 10.1084/jem.161.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchant A., Duchow J., Delville J. P., Goldman M. Lipopolysaccharide induces up-regulation of CD14 molecule on monocytes in human whole blood. Eur J Immunol. 1992 Jun;22(6):1663–1665. doi: 10.1002/eji.1830220650. [DOI] [PubMed] [Google Scholar]
- Matsuura K., Setoguchi M., Nasu N., Higuchi Y., Yoshida S., Akizuki S., Yamamoto S. Nucleotide and amino acid sequences of the mouse CD14 gene. Nucleic Acids Res. 1989 Mar 11;17(5):2132–2132. doi: 10.1093/nar/17.5.2132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nasu N., Yoshida S., Akizuki S., Higuchi Y., Setoguchi M., Yamamoto S. Molecular and physiological properties of murine CD14. Int Immunol. 1991 Feb;3(2):205–213. doi: 10.1093/intimm/3.2.205. [DOI] [PubMed] [Google Scholar]
- Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
- Setoguchi M., Nasu N., Yoshida S., Higuchi Y., Akizuki S., Yamamoto S. Mouse and human CD14 (myeloid cell-specific leucine-rich glycoprotein) primary structure deduced from cDNA clones. Biochim Biophys Acta. 1989 Jul 7;1008(2):213–222. doi: 10.1016/0167-4781(80)90012-3. [DOI] [PubMed] [Google Scholar]
- Setoguchi M., Yoshida S., Higuchi Y., Akizuki S., Yamamoto S. Molecular analysis of expression of parental cell properties in hybrids between monocytes and a myeloma cell line. Somat Cell Mol Genet. 1988 Sep;14(5):427–438. doi: 10.1007/BF01534710. [DOI] [PubMed] [Google Scholar]
- Sleyster E. C., Knook D. L. Relation between localization and function of rat liver Kupffer cells. Lab Invest. 1982 Nov;47(5):484–490. [PubMed] [Google Scholar]
- Tzung S. P., Cohen S. A. Endogenous interferon alpha/beta produced by Kupffer cells inhibits interleukin-1, tumor necrosis factor alpha production and interleukin-2-induced activation of nonparenchymal liver cells. Cancer Immunol Immunother. 1991;34(3):150–156. doi: 10.1007/BF01742305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. D., Detmers P. A., Jong M. T., Meyer B. C. Interferon-gamma depresses binding of ligand by C3b and C3bi receptors on cultured human monocytes, an effect reversed by fibronectin. J Exp Med. 1986 May 1;163(5):1245–1259. doi: 10.1084/jem.163.5.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. D. Multiple receptors for endotoxin. Curr Opin Immunol. 1991 Feb;3(1):83–90. doi: 10.1016/0952-7915(91)90082-c. [DOI] [PubMed] [Google Scholar]
- Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]