Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 May 1;179(5):1737–1741. doi: 10.1084/jem.179.5.1737

A novel biologic activity of thrombin: stimulation of monocyte chemotactic protein production

PMCID: PMC2191479  PMID: 8163952

Abstract

Thrombin is a serine protease that is released at sites of vascular injury and exerts a variety of biologic effects on different cell types. Thrombin is postulated to play a role in the pathogenesis of a number of diseases including atherosclerosis, since it activates vascular smooth muscle and endothelial cells. Thrombin mediates these effects through a specific receptor that is upregulated in vascular cells in atherosclerosis. Atherosclerosis and glomerulosclerosis are characterized by the presence of monocyte-macrophages in the lesions. Monocyte chemotactic protein (MCP-1) is believed to be an important mediator of monocyte recruitment to the tissue and can be induced in a broad variety of cells including mesangial cells. We studied the effect of thrombin on MCP-1 production and gene expression in well- characterized human mesangial cells, vascular pericytes that play a central role in fibrosis of the glomerular microvascular bed. alpha thrombin stimulates MCP-1 production and gene expression in mesangial cells in a dose- and time-dependent manner. Experiments with diisopropylfluorophosphate thrombin and gamma thrombin demonstrate that this thrombin effect requires both receptor binding as well as catalytic activity, features consistent with the known properties of the recently characterized and cloned thrombin receptor. Moreover, a human thrombin receptor activating peptide (TRAP1-7) also stimulates MCP-1 production. Northern blot analysis demonstrated that mesangial cells express an mRNA transcript that hybridizes with labeled human thrombin receptor cDNA. These data describe a novel biologic activity of thrombin and suggest an additional mechanism by which this coagulation factor may participate in the progression of glomerulosclerosis, and by analogy, atherosclerosis.

Full Text

The Full Text of this article is available as a PDF (620.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-Shavit R., Kahn A., Fenton J. W., 2nd, Wilner G. D. Chemotactic response of monocytes to thrombin. J Cell Biol. 1983 Jan;96(1):282–285. doi: 10.1083/jcb.96.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature. 1990 Dec 20;348(6303):699–704. doi: 10.1038/348699a0. [DOI] [PubMed] [Google Scholar]
  3. Chambard J. C., Paris S., L'Allemain G., Pouysségur J. Two growth factor signalling pathways in fibroblasts distinguished by pertussis toxin. Nature. 1987 Apr 23;326(6115):800–803. doi: 10.1038/326800a0. [DOI] [PubMed] [Google Scholar]
  4. Daniel T. O., Gibbs V. C., Milfay D. F., Garovoy M. R., Williams L. T. Thrombin stimulates c-sis gene expression in microvascular endothelial cells. J Biol Chem. 1986 Jul 25;261(21):9579–9582. [PubMed] [Google Scholar]
  5. Diamond J. R., Karnovsky M. J. Focal and segmental glomerulosclerosis: analogies to atherosclerosis. Kidney Int. 1988 May;33(5):917–924. doi: 10.1038/ki.1988.87. [DOI] [PubMed] [Google Scholar]
  6. Ferrario F., Castiglione A., Colasanti G., Barbiano di Belgioioso G., Bertoli S., D'Amico G. The detection of monocytes in human glomerulonephritis. Kidney Int. 1985 Sep;28(3):513–519. doi: 10.1038/ki.1985.158. [DOI] [PubMed] [Google Scholar]
  7. Floege J., Burns M. W., Alpers C. E., Yoshimura A., Pritzl P., Gordon K., Seifert R. A., Bowen-Pope D. F., Couser W. G., Johnson R. J. Glomerular cell proliferation and PDGF expression precede glomerulosclerosis in the remnant kidney model. Kidney Int. 1992 Feb;41(2):297–309. doi: 10.1038/ki.1992.42. [DOI] [PubMed] [Google Scholar]
  8. Hancock W., Atkins R. Activation of coagulation pathways and fibrin deposition in human glomerulonephritis. Semin Nephrol. 1985 Mar;5(1):69–77. [PubMed] [Google Scholar]
  9. Harlan J. M., Thompson P. J., Ross R. R., Bowen-Pope D. F. Alpha-thrombin induces release of platelet-derived growth factor-like molecule(s) by cultured human endothelial cells. J Cell Biol. 1986 Sep;103(3):1129–1133. doi: 10.1083/jcb.103.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holdsworth S. R., Thomson N. M., Glasgow E. F., Atkins R. C. The effect of defibrination on macrophage participation in rabbit nephrotoxic nephritis: studies using glomerular culture and electronmicroscopy. Clin Exp Immunol. 1979 Jul;37(1):38–43. [PMC free article] [PubMed] [Google Scholar]
  11. Main I. W., Nikolic-Paterson D. J., Atkins R. C. T cells and macrophages and their role in renal injury. Semin Nephrol. 1992 Sep;12(5):395–407. [PubMed] [Google Scholar]
  12. Marra F., Valente A. J., Pinzani M., Abboud H. E. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest. 1993 Oct;92(4):1674–1680. doi: 10.1172/JCI116753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McNamara C. A., Sarembock I. J., Gimple L. W., Fenton J. W., 2nd, Coughlin S. R., Owens G. K. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest. 1993 Jan;91(1):94–98. doi: 10.1172/JCI116206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nelken N. A., Coughlin S. R., Gordon D., Wilcox J. N. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest. 1991 Oct;88(4):1121–1127. doi: 10.1172/JCI115411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nelken N. A., Soifer S. J., O'Keefe J., Vu T. K., Charo I. F., Coughlin S. R. Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest. 1992 Oct;90(4):1614–1621. doi: 10.1172/JCI116031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rovin B. H., Tan L. C. LDL stimulates mesangial fibronectin production and chemoattractant expression. Kidney Int. 1993 Jan;43(1):218–225. doi: 10.1038/ki.1993.35. [DOI] [PubMed] [Google Scholar]
  18. Rovin B. H., Yoshiumura T., Tan L. Cytokine-induced production of monocyte chemoattractant protein-1 by cultured human mesangial cells. J Immunol. 1992 Apr 1;148(7):2148–2153. [PubMed] [Google Scholar]
  19. Satriano J. A., Hora K., Shan Z., Stanley E. R., Mori T., Schlondorff D. Regulation of monocyte chemoattractant protein-1 and macrophage colony-stimulating factor-1 by IFN-gamma, tumor necrosis factor-alpha, IgG aggregates, and cAMP in mouse mesangial cells. J Immunol. 1993 Mar 1;150(5):1971–1978. [PubMed] [Google Scholar]
  20. Shankar R., de la Motte C. A., DiCorleto P. E. Thrombin stimulates PDGF production and monocyte adhesion through distinct intracellular pathways in human endothelial cells. Am J Physiol. 1992 Jan;262(1 Pt 1):C199–C206. doi: 10.1152/ajpcell.1992.262.1.C199. [DOI] [PubMed] [Google Scholar]
  21. Shultz P. J., DiCorleto P. E., Silver B. J., Abboud H. E. Mesangial cells express PDGF mRNAs and proliferate in response to PDGF. Am J Physiol. 1988 Oct;255(4 Pt 2):F674–F684. doi: 10.1152/ajprenal.1988.255.4.F674. [DOI] [PubMed] [Google Scholar]
  22. Shultz P. J., Knauss T. C., Mené P., Abboud H. E. Mitogenic signals for thrombin in mesangial cells: regulation of phospholipase C and PDGF genes. Am J Physiol. 1989 Sep;257(3 Pt 2):F366–F374. doi: 10.1152/ajprenal.1989.257.3.F366. [DOI] [PubMed] [Google Scholar]
  23. Shuman M. A. Thrombin-cellular interactions. Ann N Y Acad Sci. 1986;485:228–239. doi: 10.1111/j.1749-6632.1986.tb34585.x. [DOI] [PubMed] [Google Scholar]
  24. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  25. Ylä-Herttuala S., Lipton B. A., Rosenfeld M. E., Särkioja T., Yoshimura T., Leonard E. J., Witztum J. L., Steinberg D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5252–5256. doi: 10.1073/pnas.88.12.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yu X., Dluz S., Graves D. T., Zhang L., Antoniades H. N., Hollander W., Prusty S., Valente A. J., Schwartz C. J., Sonenshein G. E. Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6953–6957. doi: 10.1073/pnas.89.15.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES