Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Jun 1;179(6):1903–1911. doi: 10.1084/jem.179.6.1903

Involvement of 15-lipoxygenase in early stages of atherogenesis

PMCID: PMC2191515  PMID: 8195716

Abstract

The arachidonate 15-lipoxygenase which is expressed in atherosclerotic lesions is implicated in the oxidative modification of low density lipoproteins during atherogenesis. To obtain experimental in vivo evidence for this hypothesis, we analyzed the structure of oxygenated lipids isolated from the aorta of rabbits fed with a cholesterol-rich diet for different time periods and compared the pattern of oxygenation products with that isolated from low density lipoproteins treated in vitro with the pure rabbit 15-lipoxygenase and with oxygenated lipids isolated from advanced human atherosclerotic lesions. In early atherosclerotic lesions (12-wk cholesterol feeding), specific lipoxygenase products were detected whose structure was similar to those isolated from lipoxygenase-treated low density lipoproteins. The appearance of these products did coincide with the lipid deposition in the vessel wall. In later stages of atherogenesis (26-wk cholesterol feeding) the degree of oxidative modification of the tissue lipids did increase but the share of specific lipoxygenase products was significantly lower, suggesting an increasing overlay of the specific lipoxygenase products by nonenzymatic lipid peroxidation. In advanced human atherosclerotic lesions, large amounts of oxygenation products were detected whose structure suggests a nonenzymatic origin. These data suggest that the arachidonate 15-lipoxygenase is of pathophysiological importance during the early stages of atherogenesis. In later stages of plaque development nonenzymatic lipid peroxidation becomes more relevant.

Full Text

The Full Text of this article is available as a PDF (984.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amanuma K., Kanaseki T., Ikeuchi Y., Ohkuma S., Takano T. Studies on fine structure and location of lipids in quick-freeze replicas of atherosclerotic aorta of WHHL rabbits. Virchows Arch A Pathol Anat Histopathol. 1986;410(3):231–238. doi: 10.1007/BF00710829. [DOI] [PubMed] [Google Scholar]
  2. Aqel N. M., Ball R. Y., Waldmann H., Mitchinson M. J. Monocytic origin of foam cells in human atherosclerotic plaques. Atherosclerosis. 1984 Dec;53(3):265–271. doi: 10.1016/0021-9150(84)90127-8. [DOI] [PubMed] [Google Scholar]
  3. Aviram M. Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis. 1993 Jan 4;98(1):1–9. doi: 10.1016/0021-9150(93)90217-i. [DOI] [PubMed] [Google Scholar]
  4. Avogaro P., Bon G. B., Cazzolato G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis. 1988 Jan-Feb;8(1):79–87. [PubMed] [Google Scholar]
  5. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  6. Belkner J., Wiesner R., Rathman J., Barnett J., Sigal E., Kühn H. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993 Apr 1;213(1):251–261. doi: 10.1111/j.1432-1033.1993.tb17755.x. [DOI] [PubMed] [Google Scholar]
  7. Carew T. E., Schwenke D. C., Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7725–7729. doi: 10.1073/pnas.84.21.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conrad D. J., Kuhn H., Mulkins M., Highland E., Sigal E. Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):217–221. doi: 10.1073/pnas.89.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Esterbauer H., Dieber-Rotheneder M., Waeg G., Striegl G., Jürgens G. Biochemical, structural, and functional properties of oxidized low-density lipoprotein. Chem Res Toxicol. 1990 Mar-Apr;3(2):77–92. doi: 10.1021/tx00014a001. [DOI] [PubMed] [Google Scholar]
  10. Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
  11. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Habenicht A. J., Salbach P., Goerig M., Zeh W., Janssen-Timmen U., Blattner C., King W. C., Glomset J. A. The LDL receptor pathway delivers arachidonic acid for eicosanoid formation in cells stimulated by platelet-derived growth factor. Nature. 1990 Jun 14;345(6276):634–636. doi: 10.1038/345634a0. [DOI] [PubMed] [Google Scholar]
  13. Harland W. A., Gilbert J. D., Steel G., Brooks C. J. Lipids of human atheroma. 5. The occurrence of a new group of polar sterol esters in various stages of human atherosclerosis. Atherosclerosis. 1971 Mar-Apr;13(2):239–246. doi: 10.1016/0021-9150(71)90026-8. [DOI] [PubMed] [Google Scholar]
  14. Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6499–6503. doi: 10.1073/pnas.78.10.6499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kita T., Nagano Y., Yokode M., Ishii K., Kume N., Ooshima A., Yoshida H., Kawai C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5928–5931. doi: 10.1073/pnas.84.16.5928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuhn H., Belkner J., Wiesner R., Brash A. R. Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. J Biol Chem. 1990 Oct 25;265(30):18351–18361. [PubMed] [Google Scholar]
  17. Kühn H., Barnett J., Grunberger D., Baecker P., Chow J., Nguyen B., Bursztyn-Pettegrew H., Chan H., Sigal E. Overexpression, purification and characterization of human recombinant 15-lipoxygenase. Biochim Biophys Acta. 1993 Jul 21;1169(1):80–89. doi: 10.1016/0005-2760(93)90085-n. [DOI] [PubMed] [Google Scholar]
  18. Kühn H., Brash A. R. Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells. J Biol Chem. 1990 Jan 25;265(3):1454–1458. [PubMed] [Google Scholar]
  19. McNally A. K., Chisolm G. M., 3rd, Morel D. W., Cathcart M. K. Activated human monocytes oxidize low-density lipoprotein by a lipoxygenase-dependent pathway. J Immunol. 1990 Jul 1;145(1):254–259. [PubMed] [Google Scholar]
  20. Parthasarathy S., Wieland E., Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1046–1050. doi: 10.1073/pnas.86.3.1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rankin S. M., Parthasarathy S., Steinberg D. Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res. 1991 Mar;32(3):449–456. [PubMed] [Google Scholar]
  22. Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
  23. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  24. Salbach P. B., Specht E., von Hodenberg E., Kossmann J., Janssen-Timmen U., Schneider W. J., Hugger P., King W. C., Glomset J. A., Habenicht A. J. Differential low density lipoprotein receptor-dependent formation of eicosanoids in human blood-derived monocytes. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2439–2443. doi: 10.1073/pnas.89.6.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schewe T., Kühn H. Do 15-lipoxygenases have a common biological role? Trends Biochem Sci. 1991 Oct;16(10):369–373. doi: 10.1016/0968-0004(91)90153-m. [DOI] [PubMed] [Google Scholar]
  26. Schewe T., Rapoport S. M., Kühn H. Enzymology and physiology of reticulocyte lipoxygenase: comparison with other lipoxygenases. Adv Enzymol Relat Areas Mol Biol. 1986;58:191–272. doi: 10.1002/9780470123041.ch6. [DOI] [PubMed] [Google Scholar]
  27. Schuckelt R., Brigelius-Flohé R., Maiorino M., Roveri A., Reumkens J., Strassburger W., Ursini F., Wolf B., Flohé L. Phospholipid hydroperoxide glutathione peroxidase is a selenoenzyme distinct from the classical glutathione peroxidase as evident from cDNA and amino acid sequencing. Free Radic Res Commun. 1991;14(5-6):343–361. doi: 10.3109/10715769109093424. [DOI] [PubMed] [Google Scholar]
  28. Simon T. C., Makheja A. N., Bailey J. M. The induced lipoxygenase in atherosclerotic aorta converts linoleic acid to the platelet chemorepellant factor 13-HODE. Thromb Res. 1989 Jul 15;55(2):171–178. doi: 10.1016/0049-3848(89)90433-7. [DOI] [PubMed] [Google Scholar]
  29. Sparrow C. P., Olszewski J. Cellular oxidative modification of low density lipoprotein does not require lipoxygenases. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):128–131. doi: 10.1073/pnas.89.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  31. Steinberg D., Witztum J. L. Lipoproteins and atherogenesis. Current concepts. JAMA. 1990 Dec 19;264(23):3047–3052. [PubMed] [Google Scholar]
  32. Takano T., Mineo C. Atherosclerosis and molecular pathology: mechanisms of cholesteryl ester accumulation in foam cells and extracellular space of atherosclerotic lesions. J Pharmacobiodyn. 1990 Jul;13(7):385–413. doi: 10.1248/bpb1978.13.385. [DOI] [PubMed] [Google Scholar]
  33. Ursini F., Maiorino M., Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta. 1985 Mar 29;839(1):62–70. doi: 10.1016/0304-4165(85)90182-5. [DOI] [PubMed] [Google Scholar]
  34. Wang T., Powell W. S. Increased levels of monohydroxy metabolites of arachidonic acid and linoleic acid in LDL and aorta from atherosclerotic rabbits. Biochim Biophys Acta. 1991 Jul 9;1084(2):129–138. doi: 10.1016/0005-2760(91)90211-y. [DOI] [PubMed] [Google Scholar]
  35. Ylä-Herttuala S., Palinski W., Rosenfeld M. E., Parthasarathy S., Carew T. E., Butler S., Witztum J. L., Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989 Oct;84(4):1086–1095. doi: 10.1172/JCI114271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Glass C. K., Sigal E., Witztum J. L., Steinberg D. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6959–6963. doi: 10.1073/pnas.87.18.6959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Sigal E., Särkioja T., Witztum J. L., Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest. 1991 Apr;87(4):1146–1152. doi: 10.1172/JCI115111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES