Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Jun 1;179(6):1835–1846. doi: 10.1084/jem.179.6.1835

Steroid production in the thymus: implications for thymocyte selection

PMCID: PMC2191521  PMID: 8195711

Abstract

The mouse thymus was assessed for its ability to produce steroids. Cultured thymic non-T cells produced soluble pregnenolone and deoxycorticosterone, and immunohistochemistry demonstrated steroidogenic enzymes in radioresistant thymic epithelial cells but not in thymocytes. Inhibition of thymic corticosterone production or blockade of the glucocorticoid receptor with RU-486 resulted in enhanced TCR-mediated, antigen-specific deletion of immature thymocytes. These data indicate that locally produced glucocorticoids, because of their antagonism of TCR-mediated signaling for death, may be a key element of antigen-specific thymocyte selection.

Full Text

The Full Text of this article is available as a PDF (5.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aird F., Clevenger C. V., Prystowsky M. B., Redei E. Corticotropin-releasing factor mRNA in rat thymus and spleen. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7104–7108. doi: 10.1073/pnas.90.15.7104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Batanero E., de Leeuw F. E., Jansen G. H., van Wichen D. F., Huber J., Schuurman H. J. The neural and neuro-endocrine component of the human thymus. II. Hormone immunoreactivity. Brain Behav Immun. 1992 Sep;6(3):249–264. doi: 10.1016/0889-1591(92)90047-r. [DOI] [PubMed] [Google Scholar]
  3. Bourgeois S., Pfahl M., Baulieu E. E. DNA binding properties of glucocorticosteroid receptors bound to the steroid antagonist RU-486. EMBO J. 1984 Apr;3(4):751–755. doi: 10.1002/j.1460-2075.1984.tb01879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyer P. D., Rothenberg E. V. IL-2 receptor inducibility is blocked in cortical-type thymocytes. J Immunol. 1988 May 1;140(9):2886–2892. [PubMed] [Google Scholar]
  5. Clarke B. L., Gebhardt B. M., Blalock J. E. Mitogen-stimulated lymphocytes release biologically active corticotropin. Endocrinology. 1993 Mar;132(3):983–988. doi: 10.1210/endo.132.3.8382604. [DOI] [PubMed] [Google Scholar]
  6. Cohen J. J., Duke R. C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984 Jan;132(1):38–42. [PubMed] [Google Scholar]
  7. DOUGHERTY T. F. Effect of hormones on lympatic tissue. Physiol Rev. 1952 Oct;32(4):379–401. doi: 10.1152/physrev.1952.32.4.379. [DOI] [PubMed] [Google Scholar]
  8. Geenen V., Legros J. J., Franchimont P., Baudrihaye M., Defresne M. P., Boniver J. The neuroendocrine thymus: coexistence of oxytocin and neurophysin in the human thymus. Science. 1986 Apr 25;232(4749):508–511. doi: 10.1126/science.3961493. [DOI] [PubMed] [Google Scholar]
  9. Geuze H. J., Slot J. W., Yanagibashi K., McCracken J. A., Schwartz A. L., Hall P. F. Immunogold cytochemistry of cytochromes P-450 in porcine adrenal cortex. Two enzymes (side-chain cleavage and 11 beta-hydroxylase) are co-localized in the same mitochondria. Histochemistry. 1987;86(6):551–557. doi: 10.1007/BF00489546. [DOI] [PubMed] [Google Scholar]
  10. Han V. K., D'Ercole A. J., Lund P. K. Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science. 1987 Apr 10;236(4798):193–197. doi: 10.1126/science.3563497. [DOI] [PubMed] [Google Scholar]
  11. Han V. K., Hill D. J., Strain A. J., Towle A. C., Lauder J. M., Underwood L. E., D'Ercole A. J. Identification of somatomedin/insulin-like growth factor immunoreactive cells in the human fetus. Pediatr Res. 1987 Sep;22(3):245–249. doi: 10.1203/00006450-198709000-00001. [DOI] [PubMed] [Google Scholar]
  12. Hanukoglu I., Feuchtwanger R., Hanukoglu A. Mechanism of corticotropin and cAMP induction of mitochondrial cytochrome P450 system enzymes in adrenal cortex cells. J Biol Chem. 1990 Nov 25;265(33):20602–20608. doi: 10.1016/S0021-9258(17)30545-8. [DOI] [PubMed] [Google Scholar]
  13. Henning S. J. Plasma concentrations of total and free corticosterone during development in the rat. Am J Physiol. 1978 Nov;235(5):E451–E456. doi: 10.1152/ajpendo.1978.235.5.E451. [DOI] [PubMed] [Google Scholar]
  14. Herbst W. M., Kummer W., Hofmann W., Otto H., Heym C. Carcinoid tumors of the thymus. An immunohistochemical study. Cancer. 1987 Nov 15;60(10):2465–2470. doi: 10.1002/1097-0142(19871115)60:10<2465::aid-cncr2820601020>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  15. Inomata T., Nakamura T. Influence of adrenalectomy on the development of the neonatal thymus in the rat. Biol Neonate. 1989;55(4-5):238–243. doi: 10.1159/000242924. [DOI] [PubMed] [Google Scholar]
  16. Iwata M., Hanaoka S., Sato K. Rescue of thymocytes and T cell hybridomas from glucocorticoid-induced apoptosis by stimulation via the T cell receptor/CD3 complex: a possible in vitro model for positive selection of the T cell repertoire. Eur J Immunol. 1991 Mar;21(3):643–648. doi: 10.1002/eji.1830210316. [DOI] [PubMed] [Google Scholar]
  17. Jaffe H. L. THE INFLUENCE OF THE SUPRARENAL GLAND ON THE THYMUS : III. STIMULATION OF THE GROWTH OF THE THYMUS GLAND FOLLOWING DOUBLE SUPRARENALECTOMY IN YOUNG RATS. J Exp Med. 1924 Nov 30;40(6):753–759. doi: 10.1084/jem.40.6.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jondal M., Okret S., McConkey D. Killing of immature CD4+ CD8+ thymocytes in vivo by anti-CD3 or 5'-(N-ethyl)-carboxamide adenosine is blocked by glucocorticoid receptor antagonist RU-486. Eur J Immunol. 1993 Jun;23(6):1246–1250. doi: 10.1002/eji.1830230608. [DOI] [PubMed] [Google Scholar]
  19. Kisielow P., Blüthmann H., Staerz U. D., Steinmetz M., von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature. 1988 Jun 23;333(6175):742–746. doi: 10.1038/333742a0. [DOI] [PubMed] [Google Scholar]
  20. Kubo R. T., Born W., Kappler J. W., Marrack P., Pigeon M. Characterization of a monoclonal antibody which detects all murine alpha beta T cell receptors. J Immunol. 1989 Apr 15;142(8):2736–2742. [PubMed] [Google Scholar]
  21. Kyewski B. A., Rouse R. V., Kaplan H. S. Thymocyte rosettes: multicellular complexes of lymphocytes and bone marrow-derived stromal cells in the mouse thymus. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5646–5650. doi: 10.1073/pnas.79.18.5646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LAPLANTE C., GIROUD C. J., STACHENKO J. LACK OF APPRECIABLE 17-ALPHA-HYDROXYLASE ACTIVITY IN THE NORMAL AND REGENERATED RAT ADRENAL CORTEX. Endocrinology. 1964 Nov;75:825–827. doi: 10.1210/endo-75-5-825. [DOI] [PubMed] [Google Scholar]
  23. Le Goascogne C., Robel P., Gouézou M., Sananès N., Baulieu E. E., Waterman M. Neurosteroids: cytochrome P-450scc in rat brain. Science. 1987 Sep 4;237(4819):1212–1215. doi: 10.1126/science.3306919. [DOI] [PubMed] [Google Scholar]
  24. Lee N. A., Loh D. Y., Lacy E. CD8 surface levels alter the fate of alpha/beta T cell receptor-expressing thymocytes in transgenic mice. J Exp Med. 1992 Apr 1;175(4):1013–1025. doi: 10.1084/jem.175.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mitani F., Shimizu T., Ueno R., Ishimura Y., Izumi S., Komatsu N., Watanabe K. Cytochrome P-45011 beta and P-450scc in adrenal cortex: zonal distribution and intramitochondrial localization by the horseradish peroxidase-labeled antibody method. J Histochem Cytochem. 1982 Oct;30(10):1066–1074. doi: 10.1177/30.10.6813370. [DOI] [PubMed] [Google Scholar]
  26. Mukhin A. G., Papadopoulos V., Costa E., Krueger K. E. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9813–9816. doi: 10.1073/pnas.86.24.9813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Olsen N. J., Nicholson W. E., DeBold C. R., Orth D. N. Lymphocyte-derived adrenocorticotropin is insufficient to stimulate adrenal steroidogenesis in hypophysectomized rats. Endocrinology. 1992 Apr;130(4):2113–2119. doi: 10.1210/endo.130.4.1312443. [DOI] [PubMed] [Google Scholar]
  28. Payne A. H. Hormonal regulation of cytochrome P450 enzymes, cholesterol side-chain cleavage and 17 alpha-hydroxylase/C17-20 lyase in Leydig cells. Biol Reprod. 1990 Mar;42(3):399–404. doi: 10.1095/biolreprod42.3.399. [DOI] [PubMed] [Google Scholar]
  29. Ramsdell F., Lantz T., Fowlkes B. J. A nondeletional mechanism of thymic self tolerance. Science. 1989 Nov 24;246(4933):1038–1041. doi: 10.1126/science.2511629. [DOI] [PubMed] [Google Scholar]
  30. Robey E. A., Ramsdell F., Kioussis D., Sha W., Loh D., Axel R., Fowlkes B. J. The level of CD8 expression can determine the outcome of thymic selection. Cell. 1992 Jun 26;69(7):1089–1096. doi: 10.1016/0092-8674(92)90631-l. [DOI] [PubMed] [Google Scholar]
  31. Savu L., Zouaghi H., Nunez E. A. Serum inflammatory responses of transcortin binding activities and of total and free corticosterone and progesterone levels in developing rats: a kinetic approach. Int J Tissue React. 1985;7(6):443–448. [PubMed] [Google Scholar]
  32. Schwartz R. H. Acquisition of immunologic self-tolerance. Cell. 1989 Jun 30;57(7):1073–1081. doi: 10.1016/0092-8674(89)90044-5. [DOI] [PubMed] [Google Scholar]
  33. Smith C. A., Williams G. T., Kingston R., Jenkinson E. J., Owen J. J. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature. 1989 Jan 12;337(6203):181–184. doi: 10.1038/337181a0. [DOI] [PubMed] [Google Scholar]
  34. Smith E. M., Meyer W. J., Blalock J. E. Virus-induced corticosterone in hypophysectomized mice: a possible lymphoid adrenal axis. Science. 1982 Dec 24;218(4579):1311–1312. doi: 10.1126/science.6183748. [DOI] [PubMed] [Google Scholar]
  35. Swat W., Ignatowicz L., von Boehmer H., Kisielow P. Clonal deletion of immature CD4+8+ thymocytes in suspension culture by extrathymic antigen-presenting cells. Nature. 1991 May 9;351(6322):150–153. doi: 10.1038/351150a0. [DOI] [PubMed] [Google Scholar]
  36. Urba W. J., Ewel C., Kopp W., Smith J. W., 2nd, Steis R. G., Ashwell J. D., Creekmore S. P., Rossio J., Sznol M., Sharfman W. Anti-CD3 monoclonal antibody treatment of patients with CD3-negative tumors: a phase IA/B study. Cancer Res. 1992 May 1;52(9):2394–2401. [PubMed] [Google Scholar]
  37. Wilde D. B., Marrack P., Kappler J., Dialynas D. P., Fitch F. W. Evidence implicating L3T4 in class II MHC antigen reactivity; monoclonal antibody GK1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding by cloned murine helper T lymphocyte lines. J Immunol. 1983 Nov;131(5):2178–2183. [PubMed] [Google Scholar]
  38. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  39. Zacharchuk C. M., Merćep M., Chakraborti P. K., Simons S. S., Jr, Ashwell J. D. Programmed T lymphocyte death. Cell activation- and steroid-induced pathways are mutually antagonistic. J Immunol. 1990 Dec 15;145(12):4037–4045. [PubMed] [Google Scholar]
  40. von Boehmer H., Kisielow P. Self-nonself discrimination by T cells. Science. 1990 Jun 15;248(4961):1369–1373. doi: 10.1126/science.1972594. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES