Abstract
Recombinant adeno-associated virus 2 (AAV) virions were constructed containing a gene for resistance to neomycin (neoR), under the control of either the herpesvirus thymidine kinase (TK) gene promoter (vTK- Neo), or the human parvovirus B19 p6 promoter (vB19-Neo), as well as those containing an upstream erythroid cell-specific enhancer (HS-2) from the locus control region of the human beta-globin gene cluster (vHS2-TK-Neo; vHS2-B19-Neo). These recombinant virions were used to infect either low density or highly enriched populations of CD34+ cells isolated from human umbilical cord blood. In clonogenic assays initiated with cells infected with the different recombinant AAV-Neo virions, equivalent high frequency transduction of the neoR gene into slow-cycling multipotential, erythroid, and granulocyte/macrophage (GM) progenitor cells, including those with high proliferative potential, was obtained without prestimulation with growth factors, indicating that these immature and mature hematopoietic progenitor cells were susceptible to infection by the recombinant AAV virions. Successful transduction did not require and was not enhanced by prestimulation of these cell populations with cytokines. The functional activity of the transduced neo gene was evident by the development of resistance to the drug G418, a neomycin analogue. Individual high and low proliferative colony-forming unit (CFU)-GM, burst-forming unit-erythroid, and CFU- granulocyte erythroid macrophage megakaryocyte colonies from mock- infected, or the recombinant virus-infected cultures were subjected to polymerase chain reaction analysis using a neo-specific synthetic oligonucleotide primer pair. A 276-bp DNA fragment that hybridized with a neo-specific DNA probe on Southern blots was only detected in those colonies cloned from the recombinant virus-infected cells, indicating stable integration of the transduced neo gene. These studies suggest that parvovirus-based vectors may prove to be a useful alternative to the more commonly used retroviral vectors for high efficiency gene transfer into slow or noncycling primitive hematopoietic progenitor cells, without the need for growth factor stimulation, which could potentially lead to differentiation of these cells before transplantation.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. J., Jones S. E., Fisher-Hoch S. P., Lewis E., Hall S. M., Bartlett C. L., Cohen B. J., Mortimer P. P., Pereira M. S. Human parvovirus, the cause of erythema infectiosum (fifth disease)? Lancet. 1983 Jun 18;1(8338):1378–1378. doi: 10.1016/s0140-6736(83)92152-9. [DOI] [PubMed] [Google Scholar]
- Berns K. I., Bohenzky R. A. Adeno-associated viruses: an update. Adv Virus Res. 1987;32:243–306. doi: 10.1016/s0065-3527(08)60479-0. [DOI] [PubMed] [Google Scholar]
- Blacklow N. R., Hoggan M. D., Sereno M. S., Brandt C. D., Kim H. W., Parrott R. H., Chanock R. M. A seroepidemiologic study of adenovirus-associated virus infection in infants and children. Am J Epidemiol. 1971 Oct;94(4):359–366. doi: 10.1093/oxfordjournals.aje.a121331. [DOI] [PubMed] [Google Scholar]
- Bogdanić V., Nemet D., Kastelan A., Latin V., Petrovecki M., Brkljacić-Surlaković L., Kerhin-Brkljacić V., Aurer I., Konja J., Mrsić M. Umbilical cord blood transplantation in a patient with Philadelphia chromosome-positive chronic myeloid leukemia. Transplantation. 1993 Aug;56(2):477–479. [PubMed] [Google Scholar]
- Brown T., Anand A., Ritchie L. D., Clewley J. P., Reid T. M. Intrauterine parvovirus infection associated with hydrops fetalis. Lancet. 1984 Nov 3;2(8410):1033–1034. doi: 10.1016/s0140-6736(84)91126-7. [DOI] [PubMed] [Google Scholar]
- Broxmeyer H. E., Douglas G. W., Hangoc G., Cooper S., Bard J., English D., Arny M., Thomas L., Boyse E. A. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A. 1989 May;86(10):3828–3832. doi: 10.1073/pnas.86.10.3828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broxmeyer H. E., Hangoc G., Cooper S., Ribeiro R. C., Graves V., Yoder M., Wagner J., Vadhan-Raj S., Benninger L., Rubinstein P. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4109–4113. doi: 10.1073/pnas.89.9.4109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broxmeyer H. E., Kurtzberg J., Gluckman E., Auerbach A. D., Douglas G., Cooper S., Falkenburg J. H., Bard J., Boyse E. A. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells. 1991;17(2):313–329. [PubMed] [Google Scholar]
- Cardoso A. A., Li M. L., Batard P., Hatzfeld A., Brown E. L., Levesque J. P., Sookdeo H., Panterne B., Sansilvestri P., Clark S. C. Release from quiescence of CD34+ CD38- human umbilical cord blood cells reveals their potentiality to engraft adults. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8707–8711. doi: 10.1073/pnas.90.18.8707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carow C. E., Hangoc G., Broxmeyer H. E. Human multipotential progenitor cells (CFU-GEMM) have extensive replating capacity for secondary CFU-GEMM: an effect enhanced by cord blood plasma. Blood. 1993 Feb 15;81(4):942–949. [PubMed] [Google Scholar]
- Carter B. J. Adeno-associated virus vectors. Curr Opin Biotechnol. 1992 Oct;3(5):533–539. doi: 10.1016/0958-1669(92)90082-t. [DOI] [PubMed] [Google Scholar]
- Chatterjee S., Johnson P. R., Wong K. K., Jr Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector. Science. 1992 Nov 27;258(5087):1485–1488. doi: 10.1126/science.1359646. [DOI] [PubMed] [Google Scholar]
- Cotmore S. F., Tattersall P. Characterization and molecular cloning of a human parvovirus genome. Science. 1984 Dec 7;226(4679):1161–1165. doi: 10.1126/science.6095448. [DOI] [PubMed] [Google Scholar]
- Cukor G., Blacklow N. R., Kibrick S., Swan I. C. Effect of adeno-associated virus on cancer expression by herpesvirus-transformed hamster cells. J Natl Cancer Inst. 1975 Oct;55(4):957–959. doi: 10.1093/jnci/55.4.957. [DOI] [PubMed] [Google Scholar]
- Donahue R. E., Kessler S. W., Bodine D., McDonagh K., Dunbar C., Goodman S., Agricola B., Byrne E., Raffeld M., Moen R. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med. 1992 Oct 1;176(4):1125–1135. doi: 10.1084/jem.176.4.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frickhofen N., Abkowitz J. L., Safford M., Berry J. M., Antunez-de-Mayolo J., Astrow A., Cohen R., Halperin I., King L., Mintzer D. Persistent B19 parvovirus infection in patients infected with human immunodeficiency virus type 1 (HIV-1): a treatable cause of anemia in AIDS. Ann Intern Med. 1990 Dec 15;113(12):926–933. doi: 10.7326/0003-4819-113-12-926. [DOI] [PubMed] [Google Scholar]
- Gluckman E., Broxmeyer H. A., Auerbach A. D., Friedman H. S., Douglas G. W., Devergie A., Esperou H., Thierry D., Socie G., Lehn P. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989 Oct 26;321(17):1174–1178. doi: 10.1056/NEJM198910263211707. [DOI] [PubMed] [Google Scholar]
- Hermonat P. L. Inhibition of H-ras expression by the adeno-associated virus Rep78 transformation suppressor gene product. Cancer Res. 1991 Jul 1;51(13):3373–3377. [PubMed] [Google Scholar]
- Hows J. M., Bradley B. A., Marsh J. C., Luft T., Coutinho L., Testa N. G., Dexter T. M. Growth of human umbilical-cord blood in longterm haemopoietic cultures. Lancet. 1992 Jul 11;340(8811):73–76. doi: 10.1016/0140-6736(92)90396-k. [DOI] [PubMed] [Google Scholar]
- Kohli-Kumar M., Shahidi N. T., Broxmeyer H. E., Masterson M., Delaat C., Sambrano J., Morris C., Auerbach A. D., Harris R. E. Haemopoietic stem/progenitor cell transplant in Fanconi anaemia using HLA-matched sibling umbilical cord blood cells. Br J Haematol. 1993 Oct;85(2):419–422. doi: 10.1111/j.1365-2141.1993.tb03192.x. [DOI] [PubMed] [Google Scholar]
- Kotin R. M., Menninger J. C., Ward D. C., Berns K. I. Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics. 1991 Jul;10(3):831–834. doi: 10.1016/0888-7543(91)90470-y. [DOI] [PubMed] [Google Scholar]
- Kotin R. M., Siniscalco M., Samulski R. J., Zhu X. D., Hunter L., Laughlin C. A., McLaughlin S., Muzyczka N., Rocchi M., Berns K. I. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2211–2215. doi: 10.1073/pnas.87.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurtzman G. J., Ozawa K., Cohen B., Hanson G., Oseas R., Young N. S. Chronic bone marrow failure due to persistent B19 parvovirus infection. N Engl J Med. 1987 Jul 30;317(5):287–294. doi: 10.1056/NEJM198707303170506. [DOI] [PubMed] [Google Scholar]
- Lansdorp P. M., Dragowska W., Mayani H. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med. 1993 Sep 1;178(3):787–791. doi: 10.1084/jem.178.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leary A. G., Ogawa M. Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood. 1987 Mar;69(3):953–956. [PubMed] [Google Scholar]
- Liu J. M., Fujii H., Green S. W., Komatsu N., Young N. S., Shimada T. Indiscriminate activity from the B19 parvovirus p6 promoter in nonpermissive cells. Virology. 1991 May;182(1):361–364. doi: 10.1016/0042-6822(91)90682-2. [DOI] [PubMed] [Google Scholar]
- Lu L., Xiao M., Clapp D. W., Li Z. H., Broxmeyer H. E. High efficiency retroviral mediated gene transduction into single isolated immature and replatable CD34(3+) hematopoietic stem/progenitor cells from human umbilical cord blood. J Exp Med. 1993 Dec 1;178(6):2089–2096. doi: 10.1084/jem.178.6.2089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu L., Xiao M., Grigsby S., Wang W. X., Wu B., Shen R. N., Broxmeyer H. E. Comparative effects of suppressive cytokines on isolated single CD34(3+) stem/progenitor cells from human bone marrow and umbilical cord blood plated with and without serum. Exp Hematol. 1993 Oct;21(11):1442–1446. [PubMed] [Google Scholar]
- Lu L., Xiao M., Shen R. N., Grigsby S., Broxmeyer H. E. Enrichment, characterization, and responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential. Blood. 1993 Jan 1;81(1):41–48. [PubMed] [Google Scholar]
- Miller D. G., Adam M. A., Miller A. D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990 Aug;10(8):4239–4242. doi: 10.1128/mcb.10.8.4239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. L., Walsh C. E., Ney P. A., Samulski R. J., Nienhuis A. W. Single-copy transduction and expression of human gamma-globin in K562 erythroleukemia cells using recombinant adeno-associated virus vectors: the effect of mutations in NF-E2 and GATA-1 binding motifs within the hypersensitivity site 2 enhancer. Blood. 1993 Sep 15;82(6):1900–1906. [PubMed] [Google Scholar]
- Moritz T., Keller D. C., Williams D. A. Human cord blood cells as targets for gene transfer: potential use in genetic therapies of severe combined immunodeficiency disease. J Exp Med. 1993 Aug 1;178(2):529–536. doi: 10.1084/jem.178.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munshi N. C., Zhou S., Woody M. J., Morgan D. A., Srivastava A. Successful replication of parvovirus B19 in the human megakaryocytic leukemia cell line MB-02. J Virol. 1993 Jan;67(1):562–566. doi: 10.1128/jvi.67.1.562-566.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muro-Cacho C. A., Samulski R. J., Kaplan D. Gene transfer in human lymphocytes using a vector based on adeno-associated virus. J Immunother (1991) 1992 May;11(4):231–237. doi: 10.1097/00002371-199205000-00001. [DOI] [PubMed] [Google Scholar]
- Nahreini P., Larsen S. H., Srivastava A. Cloning and integration of DNA fragments in human cells via the inverted terminal repeats of the adeno-associated virus 2 genome. Gene. 1992 Oct 1;119(2):265–272. doi: 10.1016/0378-1119(92)90281-s. [DOI] [PubMed] [Google Scholar]
- Nahreini P., Srivastava A. Rescue and replication of the adeno-associated virus 2 genome in mortal and immortal human cells. Intervirology. 1989;30(2):74–85. doi: 10.1159/000150078. [DOI] [PubMed] [Google Scholar]
- Nahreini P., Srivastava A. Rescue of the adeno-associated virus 2 genome correlates with alterations in DNA-modifying enzymes in human cells. Intervirology. 1992;33(2):109–115. doi: 10.1159/000150239. [DOI] [PubMed] [Google Scholar]
- Nahreini P., Woody M. J., Zhou S. Z., Srivastava A. Versatile adeno-associated virus 2-based vectors for constructing recombinant virions. Gene. 1993 Feb 28;124(2):257–262. doi: 10.1016/0378-1119(93)90402-o. [DOI] [PubMed] [Google Scholar]
- Ostrove J. M., Duckworth D. H., Berns K. I. Inhibition of adenovirus-transformed cell oncogenicity by adeno-associated virus. Virology. 1981 Sep;113(2):521–533. doi: 10.1016/0042-6822(81)90180-x. [DOI] [PubMed] [Google Scholar]
- Ozawa K., Kurtzman G., Young N. Productive infection by B19 parvovirus of human erythroid bone marrow cells in vitro. Blood. 1987 Aug;70(2):384–391. [PubMed] [Google Scholar]
- Pattison J. R., Jones S. E., Hodgson J., Davis L. R., White J. M., Stroud C. E., Murtaza L. Parvovirus infections and hypoplastic crisis in sickle-cell anaemia. Lancet. 1981 Mar 21;1(8221):664–665. doi: 10.1016/s0140-6736(81)91579-8. [DOI] [PubMed] [Google Scholar]
- Ponnazhagan S., Nallari M. L., Srivastava A. Suppression of human alpha-globin gene expression mediated by the recombinant adeno-associated virus 2-based antisense vectors. J Exp Med. 1994 Feb 1;179(2):733–738. doi: 10.1084/jem.179.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid D. M., Reid T. M., Brown T., Rennie J. A., Eastmond C. J. Human parvovirus-associated arthritis: a clinical and laboratory description. Lancet. 1985 Feb 23;1(8426):422–425. doi: 10.1016/s0140-6736(85)91146-8. [DOI] [PubMed] [Google Scholar]
- Samulski R. J., Chang L. S., Shenk T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol. 1987 Oct;61(10):3096–3101. doi: 10.1128/jvi.61.10.3096-3101.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samulski R. J., Chang L. S., Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. 1989 Sep;63(9):3822–3828. doi: 10.1128/jvi.63.9.3822-3828.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samulski R. J., Zhu X., Xiao X., Brook J. D., Housman D. E., Epstein N., Hunter L. A. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 1991 Dec;10(12):3941–3950. doi: 10.1002/j.1460-2075.1991.tb04964.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srivastava A., Bruno E., Briddell R., Cooper R., Srivastava C., van Besien K., Hoffman R. Parvovirus B19-induced perturbation of human megakaryocytopoiesis in vitro. Blood. 1990 Nov 15;76(10):1997–2004. [PubMed] [Google Scholar]
- Srivastava A., Lu L. Replication of B19 parvovirus in highly enriched hematopoietic progenitor cells from normal human bone marrow. J Virol. 1988 Aug;62(8):3059–3063. doi: 10.1128/jvi.62.8.3059-3063.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srivastava A. Replication of the adeno-associated virus DNA termini in vitro. Intervirology. 1987;27(3):138–147. doi: 10.1159/000149732. [DOI] [PubMed] [Google Scholar]
- Srivastava C. H., Samulski R. J., Lu L., Larsen S. H., Srivastava A. Construction of a recombinant human parvovirus B19: adeno-associated virus 2 (AAV) DNA inverted terminal repeats are functional in an AAV-B19 hybrid virus. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8078–8082. doi: 10.1073/pnas.86.20.8078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srivastava C. H., Zhou S., Munshi N. C., Srivastava A. Parvovirus B19 replication in human umbilical cord blood cells. Virology. 1992 Aug;189(2):456–461. doi: 10.1016/0042-6822(92)90569-b. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Ozawa K., Takahashi K., Asano S., Takaku F. Susceptibility of human erythropoietic cells to B19 parvovirus in vitro increases with differentiation. Blood. 1990 Feb 1;75(3):603–610. [PubMed] [Google Scholar]
- Tratschin J. D., Miller I. L., Smith M. G., Carter B. J. Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol. 1985 Nov;5(11):3251–3260. doi: 10.1128/mcb.5.11.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuan D. Y., Solomon W. B., London I. M., Lee D. P. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human "beta-like globin" genes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2554–2558. doi: 10.1073/pnas.86.8.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vilmer E., Sterkers G., Rahimy C., Denamur E., Elion J., Broyart A., Lescoeur B., Tiercy J. M., Gerota J., Blot P. HLA-mismatched cord-blood transplantation in a patient with advanced leukemia. Transplantation. 1992 May;53(5):1155–1157. [PubMed] [Google Scholar]
- Vowels M. R., Tang R. L., Berdoukas V., Ford D., Thierry D., Purtilo D., Gluckman E. Brief report: correction of X-linked lymphoproliferative disease by transplantation of cord-blood stem cells. N Engl J Med. 1993 Nov 25;329(22):1623–1625. doi: 10.1056/NEJM199311253292205. [DOI] [PubMed] [Google Scholar]
- Wagner J. E., Broxmeyer H. E., Byrd R. L., Zehnbauer B., Schmeckpeper B., Shah N., Griffin C., Emanuel P. D., Zuckerman K. S., Cooper S. Transplantation of umbilical cord blood after myeloablative therapy: analysis of engraftment. Blood. 1992 Apr 1;79(7):1874–1881. [PubMed] [Google Scholar]
- Walsh C. E., Liu J. M., Xiao X., Young N. S., Nienhuis A. W., Samulski R. J. Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7257–7261. doi: 10.1073/pnas.89.15.7257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yaegashi N., Shiraishi H., Takeshita T., Nakamura M., Yajima A., Sugamura K. Propagation of human parvovirus B19 in primary culture of erythroid lineage cells derived from fetal liver. J Virol. 1989 Jun;63(6):2422–2426. doi: 10.1128/jvi.63.6.2422-2426.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou S. Z., Broxmeyer H. E., Cooper S., Harrington M. A., Srivastava A. Adeno-associated virus 2-mediated gene transfer in murine hematopoietic progenitor cells. Exp Hematol. 1993 Jul;21(7):928–933. [PubMed] [Google Scholar]