Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Jun 1;179(6):1823–1834. doi: 10.1084/jem.179.6.1823

Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen

PMCID: PMC2191530  PMID: 8195710

Abstract

Within 1 wk of liquid culture in granulocyte/macrophage colony- stimulating factor (GM-CSF), normal B10 BR (H-2k I-E+) mouse liver nonparenchymal cells (NPC) formed loosely adherent myeloid cell clusters that have been shown to contain dendritic cell (DC) progenitors in similar studies of mouse blood or bone marrow. Mononuclear cell progeny released from these clusters at and beyond 4 d exhibited distinct dendritic morphology and were actively phagocytic. After 6-10 d of culture, these cells strongly expressed CD45, CD11b, heat stable antigen, and CD44. However, the intensity of expression of the DC-restricted markers NLDC 145, 33D1, and N418, and the macrophage marker F4/80, intercellular adhesion molecule 1, and Fc gamma RII was low to moderate, whereas the cells were negative for CD3, CD45RA, and NK1.1. Splenocytes prepared in the same way also had a similar range and intensity of expression of these immunophenotypic markers. Unlike the splenic DC, however, most of the GM-CSF-propagated putative liver DC harvested at 6-10 d expressed only a low level of major histocompatibility complex (MHC) class II (I-Ek), and they failed to induce primary allogeneic responses in naive T cells, even when propagated additionally in GM-CSF and tumor necrosis alpha and/or interferon gamma-supplemented medium. However, when 7-d cultured GM-CSF- stimulated liver cells were maintained additionally for three or more days on type-1 collagen-coated plates in the continued presence of GM- CSF, they exhibited characteristics of mature DC: MHC class II expression was markedly upregulated, mixed leukocyte reaction stimulatory activity was increased, and phagocytic function was decreased. Similar observations were made when Ia+ cells were depleted from the GM-CSF-propagated cells before exposure to collagen. Further evidence that the GM-CSF-stimulated class IIdim or class II-depleted hepatic NPC were immature DC was obtained by injecting them into allogeneic B10 (H-2b I-E-) recipients. They "homed" to T cell-dependent areas of lymph nodes and spleen where they strongly expressed donor MHC class II antigen 1-5 d later. These observations provide insight into the regulation of DC maturation, and are congruent with the possibility that the migration of immature DC from normal liver and perhaps other organ allografts may help explain their inherent tolerogenicity.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austyn J. M., Kupiec-Weglinski J. W., Hankins D. F., Morris P. J. Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone. J Exp Med. 1988 Feb 1;167(2):646–651. doi: 10.1084/jem.167.2.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Calne R. Y., Sells R. A., Pena J. R., Davis D. R., Millard P. R., Herbertson B. M., Binns R. M., Davies D. A. Induction of immunological tolerance by porcine liver allografts. Nature. 1969 Aug 2;223(5205):472–476. doi: 10.1038/223472a0. [DOI] [PubMed] [Google Scholar]
  3. Demetris A. J., Murase N., Fujisaki S., Fung J. J., Rao A. S., Starzl T. E. Hematolymphoid cell trafficking, microchimerism, and GVH reactions after liver, bone marrow, and heart transplantation. Transplant Proc. 1993 Dec;25(6):3337–3344. [PMC free article] [PubMed] [Google Scholar]
  4. Hart D. N., Fabre J. W. Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med. 1981 Aug 1;154(2):347–361. doi: 10.1084/jem.154.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Inaba K., Inaba M., Romani N., Aya H., Deguchi M., Ikehara S., Muramatsu S., Steinman R. M. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 1992 Dec 1;176(6):1693–1702. doi: 10.1084/jem.176.6.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Inaba K., Steinman R. M., Pack M. W., Aya H., Inaba M., Sudo T., Wolpe S., Schuler G. Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med. 1992 May 1;175(5):1157–1167. doi: 10.1084/jem.175.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Larsen C. P., Morris P. J., Austyn J. M. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med. 1990 Jan 1;171(1):307–314. doi: 10.1084/jem.171.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Larsen C. P., Steinman R. M., Witmer-Pack M., Hankins D. F., Morris P. J., Austyn J. M. Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med. 1990 Nov 1;172(5):1483–1493. doi: 10.1084/jem.172.5.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Miller J. F., Morahan G. Peripheral T cell tolerance. Annu Rev Immunol. 1992;10:51–69. doi: 10.1146/annurev.iy.10.040192.000411. [DOI] [PubMed] [Google Scholar]
  10. Murphy K. M., Weaver C. T., Elish M., Allen P. M., Loh D. Y. Peripheral tolerance to allogeneic class II histocompatibility antigens expressed in transgenic mice: evidence against a clonal-deletion mechanism. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10034–10038. doi: 10.1073/pnas.86.24.10034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prickett T. C., McKenzie J. L., Hart D. N. Characterization of interstitial dendritic cells in human liver. Transplantation. 1988 Nov;46(5):754–761. doi: 10.1097/00007890-198811000-00024. [DOI] [PubMed] [Google Scholar]
  12. Romani N., Lenz A., Glassel H., Stössel H., Stanzl U., Majdic O., Fritsch P., Schuler G. Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J Invest Dermatol. 1989 Nov;93(5):600–609. doi: 10.1111/1523-1747.ep12319727. [DOI] [PubMed] [Google Scholar]
  13. STARZL T. E., MARCHIORO T. L., PORTER K. A., TAYLOR P. D., FARIS T. D., HERRMANN T. J., HLAD C. J., WADDELL W. R. FACTORS DETERMINING SHORT- AND LONG-TERM SURVIVAL AFTER ORTHOTOPIC LIVER HOMOTRANSPLANTATION IN THE DOG. Surgery. 1965 Jul;58:131–155. [PMC free article] [PubMed] [Google Scholar]
  14. Starzl T. E., Demetris A. J., Murase N., Ildstad S., Ricordi C., Trucco M. Cell migration, chimerism, and graft acceptance. Lancet. 1992 Jun 27;339(8809):1579–1582. doi: 10.1016/0140-6736(92)91840-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Starzl T. E., Demetris A. J., Murase N., Thomson A. W., Trucco M., Ricordi C. Donor cell chimerism permitted by immunosuppressive drugs: a new view of organ transplantation. Immunol Today. 1993 Jun;14(6):326–332. doi: 10.1016/0167-5699(93)90054-o. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Starzl T. E., Demetris A. J., Trucco M., Murase N., Ricordi C., Ildstad S., Ramos H., Todo S., Tzakis A., Fung J. J. Cell migration and chimerism after whole-organ transplantation: the basis of graft acceptance. Hepatology. 1993 Jun;17(6):1127–1152. [PMC free article] [PubMed] [Google Scholar]
  17. Steiniger B., Klempnauer J., Wonigeit K. Phenotype and histological distribution of interstitial dendritic cells in the rat pancreas, liver, heart, and kidney. Transplantation. 1984 Aug;38(2):169–174. doi: 10.1097/00007890-198408000-00016. [DOI] [PubMed] [Google Scholar]
  18. Steinman R. M., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973 May 1;137(5):1142–1162. doi: 10.1084/jem.137.5.1142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steinman R. M., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med. 1974 Feb 1;139(2):380–397. doi: 10.1084/jem.139.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Steinman R. M., Inaba K., Austyn J. M. Donor-derived chimerism in recipients of organ transplants. Hepatology. 1993 Jun;17(6):1153–1156. [PubMed] [Google Scholar]
  21. Steinman R. M., Lustig D. S., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med. 1974 Jun 1;139(6):1431–1445. doi: 10.1084/jem.139.6.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
  23. Streilein J. W., Wilbanks G. A., Cousins S. W. Immunoregulatory mechanisms of the eye. J Neuroimmunol. 1992 Aug;39(3):185–200. doi: 10.1016/0165-5728(92)90253-h. [DOI] [PubMed] [Google Scholar]
  24. Thomas J. M., Carver F. M., Cunningham P. R., Olson L. C., Thomas F. T. Kidney allograft tolerance in primates without chronic immunosuppression--the role of veto cells. Transplantation. 1991 Jan;51(1):198–207. doi: 10.1097/00007890-199101000-00032. [DOI] [PubMed] [Google Scholar]
  25. Thomas J. M., Carver F. M., Kasten-Jolly J., Haisch C. E., Rebellato L. M., Gross U., Vore S. J., Thomas F. T. Further studies of veto activity in rhesus monkey bone marrow in relation to allograft tolerance and chimerism. Transplantation. 1994 Jan;57(1):101–115. doi: 10.1097/00007890-199401000-00018. [DOI] [PubMed] [Google Scholar]
  26. Wilbanks G. A., Mammolenti M., Streilein J. W. Studies on the induction of anterior chamber-associated immune deviation (ACAID). II. Eye-derived cells participate in generating blood-borne signals that induce ACAID. J Immunol. 1991 May 1;146(9):3018–3024. [PubMed] [Google Scholar]
  27. Wilbanks G. A., Streilein J. W. Studies on the induction of anterior chamber-associated immune deviation (ACAID). 1. Evidence that an antigen-specific, ACAID-inducing, cell-associated signal exists in the peripheral blood. J Immunol. 1991 Apr 15;146(8):2610–2617. [PubMed] [Google Scholar]
  28. Yoshimura N., Matsui S., Hamashima T., Lee C. J., Ohsaka Y., Oka T. The effects of perioperative portal venous inoculation with donor lymphocytes on renal allograft survival in the rat. I. Specific prolongation of donor grafts and suppressor factor in the serum. Transplantation. 1990 Jan;49(1):167–171. doi: 10.1097/00007890-199001000-00037. [DOI] [PubMed] [Google Scholar]
  29. van Twuyver E., Mooijaart R. J., ten Berge I. J., van der Horst A. R., Wilmink J. M., Kast W. M., Melief C. J., de Waal L. P. Pretransplantation blood transfusion revisited. N Engl J Med. 1991 Oct 24;325(17):1210–1213. doi: 10.1056/NEJM199110243251704. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES