Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Jul 1;180(1):273–281. doi: 10.1084/jem.180.1.273

A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines

PMCID: PMC2191542  PMID: 8006588

Abstract

Extracellular adenosine triphosphate (eATP) has been suggested to play a role in lymphocyte-induced tumor destruction. We now provide evidence that a protein responsible for ATP synthesis in mitochondria may also play a physiologic role in major histocompatibility complex- independent, lymphocyte-mediated cytotoxicity. A 51.5-kD protein (p51.5) bearing structural and immunologic characteristics of the beta subunit of H+ transporting ATP synthase (E.C. 3.6.1.34, beta-H+ATPase, published molecular mass of 51.6 kD) was detected on the plasma membrane of three different human tumor cell lines studied. NH2- terminal amino acid sequence analysis of purified p51.5 from K562 tumor cells revealed 100% homology of 16 residues identified in the first 21 positions to the known sequence of human mitochondrial beta-H+ ATPase. Antibody directed against a 21-mer peptide in the ATP binding region of beta-H+ ATPase (anti-beta) reacted with only one band on Western blots of whole tumor extracts and tumor membrane extracts suggesting that the antiserum reacts with a single species of protein. Anti-beta reacted with the cell membranes of tumor cells as determined by fluorescence- activated flow cytometry and immunoprecipitated a 51.5-kD protein from surface-labeled neoplastic cells (but not human erythrocytes and lymphocytes). Purified p51.5 bound to human lymphocytes and inhibited natural killer (NK) cell-mediated cytotoxicity. Furthermore, anti-beta treatment of the K562 and A549 tumor cell lines inhibited NK (by > 95%) and interleukin 2-activated killer (LAK) cell (by 75%) cytotoxicity, respectively. Soluble p51.5 upon binding to lymphocytes retained its reactivity to anti-beta suggesting that the ATP binding domain and the lymphocyte-receptor binding domain reside in distinct regions of the ligand. These results suggest that beta-H+ ATPase or a nearly identical molecule is an important ligand in the effector phase (rather than the recognition phase) of a cytolytic pathway used by naive NK and LAK cells.

Full Text

The Full Text of this article is available as a PDF (1,010.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. P., Cockcroft S., Gomperts B. D. Rat mast cells permeabilized with ATP secrete histamine in response to calcium ions buffered in the micromolar range. J Physiol. 1981 Aug;317:335–345. doi: 10.1113/jphysiol.1981.sp013828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blanchard D. K., McMillen S., Djeu J. Y. IFN-gamma enhances sensitivity of human macrophages to extracellular ATP-mediated lysis. J Immunol. 1991 Oct 15;147(8):2579–2585. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Buckle M., Guerrieri F., Papa S. Changes in activity and F1 content of mitochondrial H+-ATPase in regenerating rat liver. FEBS Lett. 1985 Sep 2;188(2):345–351. doi: 10.1016/0014-5793(85)80400-2. [DOI] [PubMed] [Google Scholar]
  5. Capuano F., Stefanelli R., Carrieri E., Papa S. Kinetic properties of mitochondrial H+-adenosine triphosphatase in Morris hepatoma 3924A. Cancer Res. 1989 Dec 1;49(23):6547–6550. [PubMed] [Google Scholar]
  6. Chahwala S. B., Cantley L. C. Extracellular ATP induces ion fluxes and inhibits growth of Friend erythroleukemia cells. J Biol Chem. 1984 Nov 25;259(22):13717–13722. [PubMed] [Google Scholar]
  7. Di Virgilio F., Bronte V., Collavo D., Zanovello P. Responses of mouse lymphocytes to extracellular adenosine 5'-triphosphate (ATP). Lymphocytes with cytotoxic activity are resistant to the permeabilizing effects of ATP. J Immunol. 1989 Sep 15;143(6):1955–1960. [PubMed] [Google Scholar]
  8. Di Virgilio F., Pizzo P., Zanovello P., Bronte V., Collavo D. Extracellular ATP as a possible mediator of cell-mediated cytotoxicity. Immunol Today. 1990 Aug;11(8):274–277. doi: 10.1016/0167-5699(90)90111-l. [DOI] [PubMed] [Google Scholar]
  9. Duke R. C., Chervenak R., Cohen J. J. Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6361–6365. doi: 10.1073/pnas.80.20.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duke R. C., Persechini P. M., Chang S., Liu C. C., Cohen J. J., Young J. D. Purified perforin induces target cell lysis but not DNA fragmentation. J Exp Med. 1989 Oct 1;170(4):1451–1456. doi: 10.1084/jem.170.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferluga J., Allison A. C. Observations on the mechanism by which T-lymphocytes exert cytotoxic effects. Nature. 1974 Aug 23;250(5468):673–675. doi: 10.1038/250673a0. [DOI] [PubMed] [Google Scholar]
  12. Filippini A., Taffs R. E., Sitkovsky M. V. Extracellular ATP in T-lymphocyte activation: possible role in effector functions. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8267–8271. doi: 10.1073/pnas.87.21.8267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frasch W. D., Green J., Caguiat J., Mejia A. ATP hydrolysis catalyzed by a beta subunit preparation purified from the chloroplast energy transducing complex CF1.CF0. J Biol Chem. 1989 Mar 25;264(9):5064–5069. [PubMed] [Google Scholar]
  14. Hatcher V. B., Norin A. J. Expression of protease and protease-inhibitory activity in human mononuclear leukocyte cultures. Effect of conA stimulation. Exp Cell Res. 1982 Dec;142(2):471–476. doi: 10.1016/0014-4827(82)90392-5. [DOI] [PubMed] [Google Scholar]
  15. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. [DOI] [PubMed] [Google Scholar]
  16. Henkart P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 1985;3:31–58. doi: 10.1146/annurev.iy.03.040185.000335. [DOI] [PubMed] [Google Scholar]
  17. Henney C. S. Studies on the mechanism of lymphocyte-mediated cytolysis. II. The use of various target cell markers to study cytolytic events. J Immunol. 1973 Jan;110(1):73–84. [PubMed] [Google Scholar]
  18. Herberman R. B., Reynolds C. W., Ortaldo J. R. Mechanism of cytotoxicity by natural killer (NK) cells. Annu Rev Immunol. 1986;4:651–680. doi: 10.1146/annurev.iy.04.040186.003251. [DOI] [PubMed] [Google Scholar]
  19. Hiserodt J. C., Britvan L. J., Targan S. R. Characterization of the cytolytic reaction mechanism of the human natural killer (NK) lymphocyte: resolution into binding, programming, and killer cell-independent steps. J Immunol. 1982 Oct;129(4):1782–1787. [PubMed] [Google Scholar]
  20. Karpel J. P., Norin A. J. Association of activated cytolytic lung lymphocytes with response to prednisone therapy in patients with idiopathic pulmonary fibrosis. Chest. 1989 Oct;96(4):794–798. doi: 10.1378/chest.96.4.794. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Luis A. M., Alconada A., Cuezva J. M. The alpha regulatory subunit of the mitochondrial F1-ATPase complex is a heat-shock protein. Identification of two highly conserved amino acid sequences among the alpha-subunits and molecular chaperones. J Biol Chem. 1990 May 15;265(14):7713–7716. [PubMed] [Google Scholar]
  23. Meier T., Arni S., Malarkannan S., Poincelet M., Hoessli D. Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminescence: a nonradioactive method for cell-surface protein analysis. Anal Biochem. 1992 Jul;204(1):220–226. doi: 10.1016/0003-2697(92)90165-4. [DOI] [PubMed] [Google Scholar]
  24. Ohta S., Tomura H., Matsuda K., Kagawa Y. Gene structure of the human mitochondrial adenosine triphosphate synthase beta subunit. J Biol Chem. 1988 Aug 15;263(23):11257–11262. [PubMed] [Google Scholar]
  25. Ostergaard H. L., Clark W. R. Evidence for multiple lytic pathways used by cytotoxic T lymphocytes. J Immunol. 1989 Oct 1;143(7):2120–2126. [PubMed] [Google Scholar]
  26. Papa S., Capuano F. The H+ -ATP synthase of mitochondria in tissue regeneration and neoplasia. Ann N Y Acad Sci. 1988;551:168–178. doi: 10.1111/j.1749-6632.1988.tb22335.x. [DOI] [PubMed] [Google Scholar]
  27. Pedersen P. L., Amzel L. M. ATP synthases. Structure, reaction center, mechanism, and regulation of one of nature's most unique machines. J Biol Chem. 1993 May 15;268(14):9937–9940. [PubMed] [Google Scholar]
  28. Pedersen P. L. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274. doi: 10.1159/000401202. [DOI] [PubMed] [Google Scholar]
  29. Radosević K., Schut T. C., van Graft M., de Grooth B. G., Greve J. A flow cytometric study of the membrane potential of natural killer and K562 cells during the cytotoxic process. J Immunol Methods. 1993 May 5;161(1):119–128. doi: 10.1016/0022-1759(93)90203-j. [DOI] [PubMed] [Google Scholar]
  30. Rozengurt E., Heppel L. A., Friedberg I. Effect of exogenous ATP on the permeability properties of transformed cultures of mouse cell lines. J Biol Chem. 1977 Jul 10;252(13):4584–4590. [PubMed] [Google Scholar]
  31. Rozengurt E., Heppel L. A. Reciprocal control of membrane permeability of transformed cultures of mouse cell lines by external and internal ATP. J Biol Chem. 1979 Feb 10;254(3):708–714. [PubMed] [Google Scholar]
  32. Saribaş A. S., Lustig K. D., Zhang X., Weisman G. A. Extracellular ATP reversibly increases the plasma membrane permeability of transformed mouse fibroblasts to large macromolecules. Anal Biochem. 1993 Feb 15;209(1):45–52. doi: 10.1006/abio.1993.1080. [DOI] [PubMed] [Google Scholar]
  33. Schatz G., Butow R. A. How are proteins imported into mitochondria? Cell. 1983 Feb;32(2):316–318. doi: 10.1016/0092-8674(83)90450-6. [DOI] [PubMed] [Google Scholar]
  34. Thomas P. J., Garboczi D. N., Pedersen P. L. Mutational analysis of the consensus nucleotide binding sequences in the rat liver mitochondrial ATP synthase beta-subunit. J Biol Chem. 1992 Oct 5;267(28):20331–20338. [PubMed] [Google Scholar]
  35. Tompkins D. C., Hatcher V. B., Patel D., Orr G. A., Higgins L. L., Lowy F. D. A human endothelial cell membrane protein that binds Staphylococcus aureus in vitro. J Clin Invest. 1990 Apr;85(4):1248–1254. doi: 10.1172/JCI114560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tschopp J., Nabholz M. Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol. 1990;8:279–302. doi: 10.1146/annurev.iy.08.040190.001431. [DOI] [PubMed] [Google Scholar]
  39. Valiante N. M., Trinchieri G. Identification of a novel signal transduction surface molecule on human cytotoxic lymphocytes. J Exp Med. 1993 Oct 1;178(4):1397–1406. doi: 10.1084/jem.178.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yodoi J., Teshigawara K., Nikaido T., Fukui K., Noma T., Honjo T., Takigawa M., Sasaki M., Minato N., Tsudo M. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol. 1985 Mar;134(3):1623–1630. [PubMed] [Google Scholar]
  41. Young J. D., Liu C. C. Multiple mechanisms of lymphocyte-mediated killing. Immunol Today. 1988 May;9(5):140–144. doi: 10.1016/0167-5699(88)91201-7. [DOI] [PubMed] [Google Scholar]
  42. Zanovello P., Bronte V., Rosato A., Pizzo P., Di Virgilio F. Responses of mouse lymphocytes to extracellular ATP. II. Extracellular ATP causes cell type-dependent lysis and DNA fragmentation. J Immunol. 1990 Sep 1;145(5):1545–1550. [PubMed] [Google Scholar]
  43. von Boxberg Y., Wütz R., Schwarz U. Use of the biotin-avidin system for labelling, isolation and characterization of neural cell-surface proteins. Eur J Biochem. 1990 Jun 20;190(2):249–256. doi: 10.1111/j.1432-1033.1990.tb15569.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES