Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Aug 1;180(2):681–686. doi: 10.1084/jem.180.2.681

Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice

PMCID: PMC2191614  PMID: 8046341

Abstract

We have investigated the origin of intraepithelial lymphocytes (IEL) populations in the murine gut, using reconstitution experiments in which the presence of thymus-derived cells of host or donor origin is rigorously controlled: RAG-/- mutant mice which have no T cells, were injected either with the bone marrow (BM) cells of nude mice or with selected peripheral lymph node (LN) T cells of euthymic mice. In thymectomized RAG-/- mice, injection of BM cells from nude mice led, after 2 mo, to the development of a peripheral B cell compartment and to the appearance, in the gut, of IEL bearing homodimeric CD8 alpha chains and either gamma/delta or alpha/beta TCR. In RAG-/- mice with a thymus, a similar injection led to complete lymphoid reconstitution, with the additional appearance in the gut of CD4+, CD8 alpha/beta+ or CD4+CD8 alpha/alpha+ IEL, all bearing alpha/beta TCR. In contrast, injection of LN T cells into these mice reconstituted a gut IEL population made of CD4+, CD8 alpha/beta+, or CD4+ CD8 alpha/alpha+ cells, all bearing alpha/beta TCR; CD8 alpha/alpha+ TCR-gamma/delta+ or alpha/beta+ IEL were not observed. These results demonstrate that the thymus and/or thymic-derived peripheral T cells are absolutely required for the generation of CD4+, CD8 alpha/beta+, and CD4+CD8 alpha/alpha+ IEL, which are thus thymus dependent. In contrast, TCR+ CD8 alpha/alpha+ IEL appear in the absence of the thymus, and thus are thymus independent.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandeira A., Itohara S., Bonneville M., Burlen-Defranoux O., Mota-Santos T., Coutinho A., Tonegawa S. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):43–47. doi: 10.1073/pnas.88.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Geus B., Van den Enden M., Coolen C., Nagelkerken L., Van der Heijden P., Rozing J. Phenotype of intraepithelial lymphocytes in euthymic and athymic mice: implications for differentiation of cells bearing a CD3-associated gamma delta T cell receptor. Eur J Immunol. 1990 Feb;20(2):291–298. doi: 10.1002/eji.1830200210. [DOI] [PubMed] [Google Scholar]
  3. Guy-Grand D., Cerf-Bensussan N., Malissen B., Malassis-Seris M., Briottet C., Vassalli P. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med. 1991 Feb 1;173(2):471–481. doi: 10.1084/jem.173.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guy-Grand D., Griscelli C., Vassalli P. The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur J Immunol. 1974 Jun;4(6):435–443. doi: 10.1002/eji.1830040610. [DOI] [PubMed] [Google Scholar]
  5. Guy-Grand D., Griscelli C., Vassalli P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions. J Exp Med. 1978 Dec 1;148(6):1661–1677. doi: 10.1084/jem.148.6.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guy-Grand D., Rocha B., Mintz P., Malassis-Seris M., Selz F., Malissen B., Vassalli P. Different use of T cell receptor transducing modules in two populations of gut intraepithelial lymphocytes are related to distinct pathways of T cell differentiation. J Exp Med. 1994 Aug 1;180(2):673–679. doi: 10.1084/jem.180.2.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guy-Grand D., Vassalli P. Gut injury in mouse graft-versus-host reaction. Study of its occurrence and mechanisms. J Clin Invest. 1986 May;77(5):1584–1595. doi: 10.1172/JCI112474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kenai H., Matsuzaki G., Nakamura T., Yoshikai Y., Nomoto K. Thymus-derived cytokine(s) including interleukin-7 induce increase of T cell receptor alpha/beta+ CD4-CD8- T cells which are extrathymically differentiated in athymic nude mice. Eur J Immunol. 1993 Aug;23(8):1818–1825. doi: 10.1002/eji.1830230813. [DOI] [PubMed] [Google Scholar]
  9. Lin T., Matsuzaki G., Kenai H., Nakamura T., Nomoto K. Thymus influences the development of extrathymically derived intestinal intraepithelial lymphocytes. Eur J Immunol. 1993 Aug;23(8):1968–1974. doi: 10.1002/eji.1830230836. [DOI] [PubMed] [Google Scholar]
  10. Mosley R. L., Klein J. R. Peripheral engraftment of fetal intestine into athymic mice sponsors T cell development: direct evidence for thymopoietic function of murine small intestine. J Exp Med. 1992 Nov 1;176(5):1365–1373. doi: 10.1084/jem.176.5.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mosley R. L., Styre D., Klein J. R. Differentiation and functional maturation of bone marrow-derived intestinal epithelial T cells expressing membrane T cell receptor in athymic radiation chimeras. J Immunol. 1990 Sep 1;145(5):1369–1375. [PubMed] [Google Scholar]
  12. Poussier P., Edouard P., Lee C., Binnie M., Julius M. Thymus-independent development and negative selection of T cells expressing T cell receptor alpha/beta in the intestinal epithelium: evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J Exp Med. 1992 Jul 1;176(1):187–199. doi: 10.1084/jem.176.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Poussier P., Teh H. S., Julius M. Thymus-independent positive and negative selection of T cells expressing a major histocompatibility complex class I restricted transgenic T cell receptor alpha/beta in the intestinal epithelium. J Exp Med. 1993 Dec 1;178(6):1947–1957. doi: 10.1084/jem.178.6.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rocha B., Dautigny N., Pereira P. Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo. Eur J Immunol. 1989 May;19(5):905–911. doi: 10.1002/eji.1830190518. [DOI] [PubMed] [Google Scholar]
  15. Rocha B., Vassalli P., Guy-Grand D. The V beta repertoire of mouse gut homodimeric alpha CD8+ intraepithelial T cell receptor alpha/beta + lymphocytes reveals a major extrathymic pathway of T cell differentiation. J Exp Med. 1991 Feb 1;173(2):483–486. doi: 10.1084/jem.173.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rocha B., Vassalli P., Guy-Grand D. The extrathymic T-cell development pathway. Immunol Today. 1992 Nov;13(11):449–454. doi: 10.1016/0167-5699(92)90074-H. [DOI] [PubMed] [Google Scholar]
  17. Rocha B., von Boehmer H., Guy-Grand D. Selection of intraepithelial lymphocytes with CD8 alpha/alpha co-receptors by self-antigen in the murine gut. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5336–5340. doi: 10.1073/pnas.89.12.5336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rocha B., von Boehmer H. Peripheral selection of the T cell repertoire. Science. 1991 Mar 8;251(4998):1225–1228. doi: 10.1126/science.1900951. [DOI] [PubMed] [Google Scholar]
  19. Shinkai Y., Rathbun G., Lam K. P., Oltz E. M., Stewart V., Mendelsohn M., Charron J., Datta M., Young F., Stall A. M. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992 Mar 6;68(5):855–867. doi: 10.1016/0092-8674(92)90029-c. [DOI] [PubMed] [Google Scholar]
  20. Sprent J. Fate of H2-activated T lymphocytes in syngeneic hosts. I. Fate in lymphoid tissues and intestines traced with 3H-thymidine, 125I-deoxyuridine and 51chromium. Cell Immunol. 1976 Feb;21(2):278–302. doi: 10.1016/0008-8749(76)90057-5. [DOI] [PubMed] [Google Scholar]
  21. Webb S., Morris C., Sprent J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell. 1990 Dec 21;63(6):1249–1256. doi: 10.1016/0092-8674(90)90420-j. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES