Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Sep 1;180(3):925–932. doi: 10.1084/jem.180.3.925

Mutational analysis of an autoantibody: differential binding and pathogenicity

PMCID: PMC2191646  PMID: 8064241

Abstract

We have used site-directed mutagenesis to change amino acid residues in the heavy chain of the pathogenic R4A anti-double-stranded DNA (dsDNA) antibody and have looked for resultant alterations in DNA binding and in pathogenicity. The data demonstrate that single amino acid substitutions in both complementarity determining and framework regions alter antigen binding. Changes in only a few amino acids entirely ablate DNA specificity or cause a 10-fold increase in relative binding. In vivo studies in mice of the pathogenicity of the mutated antibodies show that a single amino acid substitution leading to a loss of dsDNA binding leads also to a loss of glomerular sequestration. Amino acid substitutions that increase relative affinity for dsDNA cause a change in localization of immunoglobulin deposition from glomeruli to renal tubules. These studies demonstrate that small numbers of amino acid substitutions can dramatically alter antigen binding and pathogenicity, and that the pathogenicity of anti-DNA antibodies does not strictly correlate with affinity for DNA.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumal R., Birshtein B. K., Coffino P., Scharff M. D. Mutations in immunoglobulin-producing mouse myeloma cells. Science. 1973 Oct 12;182(4108):164–166. doi: 10.1126/science.182.4108.164. [DOI] [PubMed] [Google Scholar]
  2. Behar S. M., Lustgarten D. L., Corbet S., Scharff M. D. Characterization of somatically mutated S107 VH11-encoded anti-DNA autoantibodies derived from autoimmune (NZB x NZW)F1 mice. J Exp Med. 1991 Mar 1;173(3):731–741. doi: 10.1084/jem.173.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Behar S. M., Scharff M. D. Somatic diversification of the S107 (T15) VH11 germ-line gene that encodes the heavy-chain variable region of antibodies to double-stranded DNA in (NZB x NZW)F1 mice. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3970–3974. doi: 10.1073/pnas.85.11.3970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berek C., Griffiths G. M., Milstein C. Molecular events during maturation of the immune response to oxazolone. Nature. 1985 Aug 1;316(6027):412–418. doi: 10.1038/316412a0. [DOI] [PubMed] [Google Scholar]
  5. Chien N. C., Roberts V. A., Giusti A. M., Scharff M. D., Getzoff E. D. Significant structural and functional change of an antigen-binding site by a distant amino acid substitution: proposal of a structural mechanism. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5532–5536. doi: 10.1073/pnas.86.14.5532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davidson A., Manheimer-Lory A., Aranow C., Peterson R., Hannigan N., Diamond B. Molecular characterization of a somatically mutated anti-DNA antibody bearing two systemic lupus erythematosus-related idiotypes. J Clin Invest. 1990 May;85(5):1401–1409. doi: 10.1172/JCI114584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diamond B., Scharff M. D. Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5841–5844. doi: 10.1073/pnas.81.18.5841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ebling F., Hahn B. H. Restricted subpopulations of DNA antibodies in kidneys of mice with systemic lupus. Comparison of antibodies in serum and renal eluates. Arthritis Rheum. 1980 Apr;23(4):392–403. doi: 10.1002/art.1780230402. [DOI] [PubMed] [Google Scholar]
  9. Herron J. N., He X. M., Ballard D. W., Blier P. R., Pace P. E., Bothwell A. L., Voss E. W., Jr, Edmundson A. B. An autoantibody to single-stranded DNA: comparison of the three-dimensional structures of the unliganded Fab and a deoxynucleotide-Fab complex. Proteins. 1991;11(3):159–175. doi: 10.1002/prot.340110302. [DOI] [PubMed] [Google Scholar]
  10. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  11. Krishnan M. R., Marion T. N. Structural similarity of antibody variable regions from immune and autoimmune anti-DNA antibodies. J Immunol. 1993 Jun 1;150(11):4948–4957. [PubMed] [Google Scholar]
  12. Madaio M. P., Carlson J., Cataldo J., Ucci A., Migliorini P., Pankewycz O. Murine monoclonal anti-DNA antibodies bind directly to glomerular antigens and form immune deposits. J Immunol. 1987 May 1;138(9):2883–2889. [PubMed] [Google Scholar]
  13. Manser T., Gefter M. L. Isolation of hybridomas expressing a specific heavy chain variable region gene segment by using a screening technique that detects mRNA sequences in whole cell lysates. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2470–2474. doi: 10.1073/pnas.81.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marion T. N., Tillman D. M., Jou N. T. Interclonal and intraclonal diversity among anti-DNA antibodies from an (NZB x NZW)F1 mouse. J Immunol. 1990 Oct 1;145(7):2322–2332. [PubMed] [Google Scholar]
  15. Miller T. E., Lahita R. G., Zarro V. J., MacWilliam J., Koffler D. Clinical significance of anti-double-stranded DNA antibodies detected by a solid phase enzyme immunoassay. Arthritis Rheum. 1981 Apr;24(4):602–610. doi: 10.1002/art.1780240406. [DOI] [PubMed] [Google Scholar]
  16. Nieto A., Gaya A., Jansa M., Moreno C., Vives J. Direct measurement of antibody affinity distribution by hapten-inhibition enzyme immunoassay. Mol Immunol. 1984 Jun;21(6):537–543. doi: 10.1016/0161-5890(84)90070-1. [DOI] [PubMed] [Google Scholar]
  17. O'Keefe T. L., Bandyopadhyay S., Datta S. K., Imanishi-Kari T. V region sequences of an idiotypically connected family of pathogenic anti-DNA autoantibodies. J Immunol. 1990 Jun 1;144(11):4275–4283. [PubMed] [Google Scholar]
  18. Ohnishi K., Ebling F. M., Mitchell B., Singh R. R., Hahn B. H., Tsao B. P. Comparison of pathogenic and non-pathogenic murine antibodies to DNA: antigen binding and structural characteristics. Int Immunol. 1994 Jun;6(6):817–830. doi: 10.1093/intimm/6.6.817. [DOI] [PubMed] [Google Scholar]
  19. Panka D. J., Mudgett-Hunter M., Parks D. R., Peterson L. L., Herzenberg L. A., Haber E., Margolies M. N. Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies. Proc Natl Acad Sci U S A. 1988 May;85(9):3080–3084. doi: 10.1073/pnas.85.9.3080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pearson L., Lightfoot R. W., Jr Correlation of DNA-anti-DNA association rates with clinical activity in systemic lupus erythematosus (SLE). J Immunol. 1981 Jan;126(1):16–19. [PubMed] [Google Scholar]
  21. Seeman N. C., Rosenberg J. M., Rich A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci U S A. 1976 Mar;73(3):804–808. doi: 10.1073/pnas.73.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sharon J., Gefter M. L., Wysocki L. J., Margolies M. N. Recurrent somatic mutations in mouse antibodies to p-azophenylarsonate increase affinity for hapten. J Immunol. 1989 Jan 15;142(2):596–601. [PubMed] [Google Scholar]
  23. Sharon J. Structural correlates of high antibody affinity: three engineered amino acid substitutions can increase the affinity of an anti-p-azophenylarsonate antibody 200-fold. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4814–4817. doi: 10.1073/pnas.87.12.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sharon J. The invariant tryptophan in an H chain V region is not essential to antibody binding. J Immunol. 1988 Apr 15;140(8):2666–2669. [PubMed] [Google Scholar]
  25. Shefner R., Kleiner G., Turken A., Papazian L., Diamond B. A novel class of anti-DNA antibodies identified in BALB/c mice. J Exp Med. 1991 Feb 1;173(2):287–296. doi: 10.1084/jem.173.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G. The role of clonal selection and somatic mutation in autoimmunity. 1987 Aug 27-Sep 2Nature. 328(6133):805–811. doi: 10.1038/328805a0. [DOI] [PubMed] [Google Scholar]
  27. Shlomchik M., Mascelli M., Shan H., Radic M. Z., Pisetsky D., Marshak-Rothstein A., Weigert M. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med. 1990 Jan 1;171(1):265–292. doi: 10.1084/jem.171.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Takeda Y., Kim J. G., Caday C. G., Steers E., Jr, Ohlendorf D. H., Anderson W. F., Matthews B. W. Different interactions used by Cro repressor in specific and nonspecific DNA binding. J Biol Chem. 1986 Jul 5;261(19):8608–8616. [PubMed] [Google Scholar]
  29. Tramontano A., Chothia C., Lesk A. M. Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J Mol Biol. 1990 Sep 5;215(1):175–182. doi: 10.1016/S0022-2836(05)80102-0. [DOI] [PubMed] [Google Scholar]
  30. Vlahakos D. V., Foster M. H., Adams S., Katz M., Ucci A. A., Barrett K. J., Datta S. K., Madaio M. P. Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites. Kidney Int. 1992 Jun;41(6):1690–1700. doi: 10.1038/ki.1992.242. [DOI] [PubMed] [Google Scholar]
  31. van Es J. H., Gmelig Meyling F. H., van de Akker W. R., Aanstoot H., Derksen R. H., Logtenberg T. Somatic mutations in the variable regions of a human IgG anti-double-stranded DNA autoantibody suggest a role for antigen in the induction of systemic lupus erythematosus. J Exp Med. 1991 Feb 1;173(2):461–470. doi: 10.1084/jem.173.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES