Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Sep 1;180(3):917–923. doi: 10.1084/jem.180.3.917

Apoptosis is regulated by the rate of glucose transport in an interleukin 3 dependent cell line

PMCID: PMC2191668  PMID: 8064240

Abstract

In the absence of a survival stimulus, the interleukin 3 (IL-3)- dependent IC.DP cell line undergoes a process termed programmed cell death or apoptosis. Survival can be induced by IL-3, which can also stimulate proliferation of IC.DP cells. IC.DP cells have been stably transfected with the p160v-abl protein tyrosine kinase, activation of the kinase at the permissive temperature permits cell survival in the absence of IL-3 by suppression of apoptosis, although the growth factor is still required for proliferation. Both IL-3 and activation of the v- ABL tyrosine kinase stimulated glucose transport, which may in part be due to a translocation of transporters to the cell surface. Inhibition of glucose uptake markedly increased the rate of apoptosis in these cells, an effect that could be reversed by the provision of alternative energy sources such as glutamine. Growth factor- or oncogene-mediated increases in glucose uptake may therefore represent an important regulatory point in the suppression of apoptosis.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin S. A. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta. 1993 Jun 8;1154(1):17–49. doi: 10.1016/0304-4157(93)90015-g. [DOI] [PubMed] [Google Scholar]
  2. Bird T. A., Davies A., Baldwin S. A., Saklatvala J. Interleukin 1 stimulates hexose transport in fibroblasts by increasing the expression of glucose transporters. J Biol Chem. 1990 Aug 15;265(23):13578–13583. [PubMed] [Google Scholar]
  3. Cohen J. J., Duke R. C., Fadok V. A., Sellins K. S. Apoptosis and programmed cell death in immunity. Annu Rev Immunol. 1992;10:267–293. doi: 10.1146/annurev.iy.10.040192.001411. [DOI] [PubMed] [Google Scholar]
  4. Davies A., Meeran K., Cairns M. T., Baldwin S. A. Peptide-specific antibodies as probes of the orientation of the glucose transporter in the human erythrocyte membrane. J Biol Chem. 1987 Jul 5;262(19):9347–9352. [PubMed] [Google Scholar]
  5. Delia D., Aiello A., Soligo D., Fontanella E., Melani C., Pezzella F., Pierotti M. A., Della Porta G. bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells. Blood. 1992 Mar 1;79(5):1291–1298. [PubMed] [Google Scholar]
  6. Dive C., Evans C. A., Whetton A. D. Induction of apoptosis--new targets for cancer chemotherapy. Semin Cancer Biol. 1992 Dec;3(6):417–427. [PubMed] [Google Scholar]
  7. Dive C., Gregory C. D., Phipps D. J., Evans D. L., Milner A. E., Wyllie A. H. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim Biophys Acta. 1992 Feb 3;1133(3):275–285. doi: 10.1016/0167-4889(92)90048-g. [DOI] [PubMed] [Google Scholar]
  8. Evans C. A., Owen-Lynch P. J., Whetton A. D., Dive C. Activation of the Abelson tyrosine kinase activity is associated with suppression of apoptosis in hemopoietic cells. Cancer Res. 1993 Apr 15;53(8):1735–1738. [PubMed] [Google Scholar]
  9. Gale R. P. Chronic myelogenous leukemia: molecule to man. Henry Ford Hosp Med J. 1991;39(2):108–111. [PubMed] [Google Scholar]
  10. Gorska-Flipot I., Norman C., Addy L., Minden M. Molecular pathology of chronic myelogenous leukemia. Tumour Biol. 1990;11 (Suppl 1):25–43. doi: 10.1159/000217675. [DOI] [PubMed] [Google Scholar]
  11. Gregory C. D., Dive C., Henderson S., Smith C. A., Williams G. T., Gordon J., Rickinson A. B. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature. 1991 Feb 14;349(6310):612–614. doi: 10.1038/349612a0. [DOI] [PubMed] [Google Scholar]
  12. Hamilton J. A., Vairo G., Lingelbach S. R. Activation and proliferation signals in murine macrophages: stimulation of glucose uptake by hemopoietic growth factors and other agents. J Cell Physiol. 1988 Mar;134(3):405–412. doi: 10.1002/jcp.1041340311. [DOI] [PubMed] [Google Scholar]
  13. Hasthorpe S., Carver J. A., Rees D., Campbell I. D. Metabolic effects of interleukin 3 on 32D cl23 cells analyzed by NMR. J Cell Physiol. 1987 Nov;133(2):351–357. doi: 10.1002/jcp.1041330220. [DOI] [PubMed] [Google Scholar]
  14. Heyworth C. M., Whetton A. D., Nicholls S., Zsebo K., Dexter T. M. Stem cell factor directly stimulates the development of enriched granulocyte-macrophage colony-forming cells and promotes the effects of other colony-stimulating factors. Blood. 1992 Nov 1;80(9):2230–2236. [PubMed] [Google Scholar]
  15. Johnson G. D., Davidson R. S., McNamee K. C., Russell G., Goodwin D., Holborow E. J. Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy. J Immunol Methods. 1982 Dec 17;55(2):231–242. doi: 10.1016/0022-1759(82)90035-7. [DOI] [PubMed] [Google Scholar]
  16. Kipreos E. T., Wang J. Y. Reversible dependence on growth factor interleukin-3 in myeloid cells expressing temperature sensitive v-abl oncogene. Oncogene Res. 1988 Feb;2(3):277–284. [PubMed] [Google Scholar]
  17. Koivisto U. M., Martinez-Valdez H., Bilan P. J., Burdett E., Ramlal T., Klip A. Differential regulation of the GLUT-1 and GLUT-4 glucose transport systems by glucose and insulin in L6 muscle cells in culture. J Biol Chem. 1991 Feb 5;266(4):2615–2621. [PubMed] [Google Scholar]
  18. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  19. Koury M. J., Bondurant M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science. 1990 Apr 20;248(4953):378–381. doi: 10.1126/science.2326648. [DOI] [PubMed] [Google Scholar]
  20. Koyasu S., Tojo A., Miyajima A., Akiyama T., Kasuga M., Urabe A., Schreurs J., Arai K., Takaku F., Yahara I. Interleukin 3-specific tyrosine phosphorylation of a membrane glycoprotein of Mr 150,000 in multi-factor-dependent myeloid cell lines. EMBO J. 1987 Dec 20;6(13):3979–3984. doi: 10.1002/j.1460-2075.1987.tb02740.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kozka I. J., Clark A. E., Holman G. D. Chronic treatment with insulin selectively down-regulates cell-surface GLUT4 glucose transporters in 3T3-L1 adipocytes. J Biol Chem. 1991 Jun 25;266(18):11726–11731. [PubMed] [Google Scholar]
  22. Madon R. J., Martin S., Davies A., Fawcett H. A., Flint D. J., Baldwin S. A. Identification and characterization of glucose transport proteins in plasma membrane- and Golgi vesicle-enriched fractions prepared from lactating rat mammary gland. Biochem J. 1990 Nov 15;272(1):99–105. doi: 10.1042/bj2720099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miyamura K., Kobayashi T., Sasaki T., Ibuka T., Imai K., Sakai Y., Kawaguchi K., Miyashita T., Iwaya M., Mizutani S. Gene amplification of Japanese non-Hodgkin lymphoma with involvement of the BCL2 gene. Int J Hematol. 1991 Apr;54(2):137–140. [PubMed] [Google Scholar]
  24. Nefesh I., Bauskin A. R., Alkalay I., Golembo M., Ben-Neriah Y. IL-3 facilitates lymphocyte hexose transport by enhancing the intrinsic activity of the transport system. Int Immunol. 1991 Aug;3(8):827–831. doi: 10.1093/intimm/3.8.827. [DOI] [PubMed] [Google Scholar]
  25. Nuñez G., London L., Hockenbery D., Alexander M., McKearn J. P., Korsmeyer S. J. Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol. 1990 May 1;144(9):3602–3610. [PubMed] [Google Scholar]
  26. Owen P. J., Musk P., Evans C. A., Whetton A. D. Cellular signaling events elicited by v-abl associated with growth factor independence in an interleukin-3-dependent cell line. J Biol Chem. 1993 Jul 25;268(21):15696–15703. [PubMed] [Google Scholar]
  27. Pasternak C. A., Aiyathurai J. E., Makinde V., Davies A., Baldwin S. A., Konieczko E. M., Widnell C. C. Regulation of glucose uptake by stressed cells. J Cell Physiol. 1991 Nov;149(2):324–331. doi: 10.1002/jcp.1041490221. [DOI] [PubMed] [Google Scholar]
  28. Reed B. C., Shade D., Alperovich F., Vang M. 3T3-L1 adipocyte glucose transporter (HepG2 class): sequence and regulation of protein and mRNA expression by insulin, differentiation, and glucose starvation. Arch Biochem Biophys. 1990 Jun;279(2):261–274. doi: 10.1016/0003-9861(90)90490-p. [DOI] [PubMed] [Google Scholar]
  29. Takakura Y., Kuentzel S. L., Raub T. J., Davies A., Baldwin S. A., Borchardt R. T. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin. Biochim Biophys Acta. 1991 Nov 18;1070(1):1–10. doi: 10.1016/0005-2736(91)90139-y. [DOI] [PubMed] [Google Scholar]
  30. Tordjman K. M., Leingang K. A., Mueckler M. Differential regulation of the HepG2 and adipocyte/muscle glucose transporters in 3T3L1 adipocytes. Effect of chronic glucose deprivation. Biochem J. 1990 Oct 1;271(1):201–207. doi: 10.1042/bj2710201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vaux D. L., Cory S., Adams J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988 Sep 29;335(6189):440–442. doi: 10.1038/335440a0. [DOI] [PubMed] [Google Scholar]
  32. Wang Z., Gao X. Z., Preisler H. D. Studies of the proliferation and differentiation of immature myeloid cells in vitro. I. Chronic myelogenous leukemia. Am J Hematol. 1989 Feb;30(2):77–81. doi: 10.1002/ajh.2830300205. [DOI] [PubMed] [Google Scholar]
  33. Whetton A. D., Bazill G. W., Dexter T. M. Haemopoietic cell growth factor mediates cell survival via its action on glucose transport. EMBO J. 1984 Feb;3(2):409–413. doi: 10.1002/j.1460-2075.1984.tb01821.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Whetton A. D., Bazill G. W., Dexter T. M. Stimulation of hexose uptake by haemopoietic cell growth factor occurs in WEHI-3B myelomonocytic leukaemia cells: a possible mechanism for loss of growth control. J Cell Physiol. 1985 Apr;123(1):73–78. doi: 10.1002/jcp.1041230112. [DOI] [PubMed] [Google Scholar]
  35. Widnell C. C., Baldwin S. A., Davies A., Martin S., Pasternak C. A. Cellular stress induces a redistribution of the glucose transporter. FASEB J. 1990 Apr 1;4(6):1634–1637. doi: 10.1096/fasebj.4.6.2156742. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES