Abstract
Limited regions of amino acid sequence similarity frequently occur between microbial antigens and host proteins. It has been widely anticipated that during infection such sequence similarities could induce cross-reactive T cell responses, thereby initiating T cell- mediated autoimmune disease. However, the nature of major histocompatibility complex (MHC)-restricted antigen presentation confers a number of constraints that should make this type of T cell cross-reactivity a rare, MHC allele-dependent event. We tested this prediction using two insulin-dependent diabetes mellitus (IDDM)- associated antigens, coxsackievirus P2-C (Cox P2-C) protein and glutamate decarboxylase (GAD65), which share a prototypic sequence similarity of six consecutive amino acids within otherwise unrelated proteins. We surveyed a panel of 10 murine MHC class II alleles that encompass the spectrum of standard alleles for the ability to cross- reactively present Cox P2-C and GAD65. Out of the 10 restriction elements tested, the sequence similarity regions were both dominant determinants and were cross-reactively displayed after the natural processing of whole antigens, only in the context of I-Anod. These data show that cross-reactive T cell recognition of sequence similarity regions in unrelated proteins is confined to certain MHC alleles, which may explain MHC association with autoimmune disease. It is striking that these two diabetes-associated antigens were cross-reactively recognized only in the context of a diabetes susceptibility allele. Since the human and the murine class II alleles associated with IDDM share conserved features, cross-reactive T cell recognition of GAD65 and Cox P2-C may contribute to the pathogenesis of human IDDM and account for the epidemiological association of coxsackievirus with IDDM.
Full Text
The Full Text of this article is available as a PDF (601.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acha-Orbea H., McDevitt H. O. The first external domain of the nonobese diabetic mouse class II I-A beta chain is unique. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2435–2439. doi: 10.1073/pnas.84.8.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkinson M. A., Kaufman D. L., Campbell L., Gibbs K. A., Shah S. C., Bu D. F., Erlander M. G., Tobin A. J., Maclaren N. K. Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. Lancet. 1992 Feb 22;339(8791):458–459. doi: 10.1016/0140-6736(92)91061-c. [DOI] [PubMed] [Google Scholar]
- Banatvala J. E., Bryant J., Schernthaner G., Borkenstein M., Schober E., Brown D., De Silva L. M., Menser M. A., Silink M. Coxsackie B, mumps, rubella, and cytomegalovirus specific IgM responses in patients with juvenile-onset insulin-dependent diabetes mellitus in Britain, Austria, and Australia. Lancet. 1985 Jun 22;1(8443):1409–1412. doi: 10.1016/s0140-6736(85)91843-4. [DOI] [PubMed] [Google Scholar]
- Chatterjee N. K., Nejman C., Gerling I. Purification and characterization of a strain of coxsackievirus B4 of human origin that induces diabetes in mice. J Med Virol. 1988 Sep;26(1):57–69. doi: 10.1002/jmv.1890260109. [DOI] [PubMed] [Google Scholar]
- Cohen I. R. Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetes. Annu Rev Immunol. 1991;9:567–589. doi: 10.1146/annurev.iy.09.040191.003031. [DOI] [PubMed] [Google Scholar]
- Cohn L. E., Glimcher L. H., Waldmann R. A., Smith J. A., Ben-Nun A., Seidman J. G., Choi E. Identification of functional regions on the I-Ab molecule by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1986 Feb;83(3):747–751. doi: 10.1073/pnas.83.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Alessio D. J. A case-control study of group B Coxsackievirus immunoglobulin M antibody prevalence and HLA-DR antigens in newly diagnosed cases of insulin-dependent diabetes mellitus. Am J Epidemiol. 1992 Jun 15;135(12):1331–1338. doi: 10.1093/oxfordjournals.aje.a116244. [DOI] [PubMed] [Google Scholar]
- Davis C. B., Buerstedde J. M., McKean D. J., Jones P. P., McDevitt H. O., Wraith D. C. The role of polymorphic I-Ak beta chain residues in presentation of a peptide from myelin basic protein. J Exp Med. 1989 Jun 1;169(6):2239–2244. doi: 10.1084/jem.169.6.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elias D., Cohen I. R. Peptide therapy for diabetes in NOD mice. Lancet. 1994 Mar 19;343(8899):704–706. doi: 10.1016/s0140-6736(94)91582-2. [DOI] [PubMed] [Google Scholar]
- Fujinami R. S., Oldstone M. B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985 Nov 29;230(4729):1043–1045. doi: 10.1126/science.2414848. [DOI] [PubMed] [Google Scholar]
- Jenkins O., Booth J. D., Minor P. D., Almond J. W. The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the Picornaviridae. J Gen Virol. 1987 Jul;68(Pt 7):1835–1848. doi: 10.1099/0022-1317-68-7-1835. [DOI] [PubMed] [Google Scholar]
- Kaufman D. L., Erlander M. G., Clare-Salzler M., Atkinson M. A., Maclaren N. K., Tobin A. J. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest. 1992 Jan;89(1):283–292. doi: 10.1172/JCI115573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King M. L., Shaikh A., Bidwell D., Voller A., Banatvala J. E. Coxsackie-B-virus-specific IgM responses in children with insulin-dependent (juvenile-onset; type I) diabetes mellitus. Lancet. 1983 Jun 25;1(8339):1397–1399. doi: 10.1016/s0140-6736(83)92353-x. [DOI] [PubMed] [Google Scholar]
- Lee D. S., Tian J., Phan T., Kaufman D. L. Cloning and sequence analysis of a murine cDNA encoding glutamate decarboxylase (GAD65). Biochim Biophys Acta. 1993 Oct 19;1216(1):157–160. doi: 10.1016/0167-4781(93)90056-j. [DOI] [PubMed] [Google Scholar]
- Lee J. M., McKean D. J., Watts T. H. Functional mapping of MHC class II polymorphic residues. The alpha-chain controls the specificity for binding an Ad-versus an A k-restricted peptide and the beta-chain region 65-67 controls T cell recognition but not peptide binding. J Immunol. 1991 May 1;146(9):2952–2959. [PubMed] [Google Scholar]
- Lohmann T., Leslie R. D., Hawa M., Geysen M., Rodda S., Londei M. Immunodominant epitopes of glutamic acid decarboxylase 65 and 67 in insulin-dependent diabetes mellitus. Lancet. 1994 Jun 25;343(8913):1607–1608. doi: 10.1016/s0140-6736(94)93061-9. [DOI] [PubMed] [Google Scholar]
- Lundberg A. S., McDevitt H. O. Evolution of major histocompatibility complex class II allelic diversity: direct descent in mice and humans. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6545–6549. doi: 10.1073/pnas.89.14.6545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markmann J., Lo D., Naji A., Palmiter R. D., Brinster R. L., Heber-Katz E. Antigen presenting function of class II MHC expressing pancreatic beta cells. Nature. 1988 Dec 1;336(6198):476–479. doi: 10.1038/336476a0. [DOI] [PubMed] [Google Scholar]
- Oldstone M. B. Molecular mimicry and autoimmune disease. Cell. 1987 Sep 11;50(6):819–820. doi: 10.1016/0092-8674(87)90507-1. [DOI] [PubMed] [Google Scholar]
- Sercarz E. E., Lehmann P. V., Ametani A., Benichou G., Miller A., Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol. 1993;11:729–766. doi: 10.1146/annurev.iy.11.040193.003501. [DOI] [PubMed] [Google Scholar]
- Singh V. K., Kalra H. K., Yamaki K., Abe T., Donoso L. A., Shinohara T. Molecular mimicry between a uveitopathogenic site of S-antigen and viral peptides. Induction of experimental autoimmune uveitis in Lewis rats. J Immunol. 1990 Feb 15;144(4):1282–1287. [PubMed] [Google Scholar]
- Yoon J. W., Austin M., Onodera T., Notkins A. L. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med. 1979 May 24;300(21):1173–1179. doi: 10.1056/NEJM197905243002102. [DOI] [PubMed] [Google Scholar]
- Yoon J. W., London W. T., Curfman B. L., Brown R. L., Notkins A. L. Coxsackie virus B4 produces transient diabetes in nonhuman primates. Diabetes. 1986 Jun;35(6):712–716. doi: 10.2337/diab.35.6.712. [DOI] [PubMed] [Google Scholar]