Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Nov 1;180(5):1999–2004. doi: 10.1084/jem.180.5.1999

Triggering of human monocyte activation through CD69, a member of the natural killer cell gene complex family of signal transducing receptors

PMCID: PMC2191715  PMID: 7964477

Abstract

The expression and function of CD69, a member of the natural killer cell gene complex family of signal transducing receptors, was investigated on human monocytes. CD69 was found expressed on all peripheral blood monocytes, as a 28- and 32-kD disulfide-linked dimer. Molecular cross-linking of CD69 receptors induced extracellular Ca2+ influx, as revealed by flow cytometry. CD69 cross-linking resulted also in phospholipase A2 activation, as detected by in vivo arachidonic acid release measurement from intact cells and by direct in vitro measurement of enzymatic activity using radiolabeled phosphatidylcholine vesicles. Prostaglandin E 2 alpha, 6-keto- prostaglandin F 1 alpha, and leukotriene B4 were detected by radioimmunoassay in supernatants from CD69-stimulated monocytes, suggesting the activation of both cyclooxygenase and lipoxygenase pathways after CD69 stimulation. CD69 cross-linking, moreover, was able to induce strong nitric oxide (NO) production from monocytes, as detected by accumulation of NO oxydixed derivatives, and cyclic GMP. It is important to note that NO generation was responsible for CD69- mediated increase in spontaneous cytotoxicity against L929 murine transformed fibroblast cell line and induction of redirected cytotoxicity towards P815 FcRII+ murine mastocytoma cell line. These data indicate that CD69 can act as a potent stimulatory molecule on the surface of human peripheral blood monocytes.

Full Text

The Full Text of this article is available as a PDF (661.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer S. Measurement of nitric oxide in biological models. FASEB J. 1993 Feb 1;7(2):349–360. doi: 10.1096/fasebj.7.2.8440411. [DOI] [PubMed] [Google Scholar]
  2. Bieber T., Rieger A., Stingl G., Sander E., Wanek P., Strobel I. CD69, an early activation antigen on lymphocytes, is constitutively expressed by human epidermal Langerhans cells. J Invest Dermatol. 1992 May;98(5):771–776. doi: 10.1111/1523-1747.ep12499948. [DOI] [PubMed] [Google Scholar]
  3. Bonta I. L., Ben-Efraim S. Involvement of inflammatory mediators in macrophage antitumor activity. J Leukoc Biol. 1993 Dec;54(6):613–626. doi: 10.1002/jlb.54.6.613. [DOI] [PubMed] [Google Scholar]
  4. Cebrián M., Yagüe E., Rincón M., López-Botet M., de Landázuri M. O., Sánchez-Madrid F. Triggering of T cell proliferation through AIM, an activation inducer molecule expressed on activated human lymphocytes. J Exp Med. 1988 Nov 1;168(5):1621–1637. doi: 10.1084/jem.168.5.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cosulich M. E., Rubartelli A., Risso A., Cozzolino F., Bargellesi A. Functional characterization of an antigen involved in an early step of T-cell activation. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4205–4209. doi: 10.1073/pnas.84.12.4205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. D'Ambrosio D., Cantrell D. A., Frati L., Santoni A., Testi R. Involvement of p21ras activation in T cell CD69 expression. Eur J Immunol. 1994 Mar;24(3):616–620. doi: 10.1002/eji.1830240319. [DOI] [PubMed] [Google Scholar]
  7. De Maria R., Fais S., Silvestri M., Frati L., Pallone F., Santoni A., Testi R. Continuous in vivo activation and transient hyporesponsiveness to TcR/CD3 triggering of human gut lamina propria lymphocytes. Eur J Immunol. 1993 Dec;23(12):3104–3108. doi: 10.1002/eji.1830231209. [DOI] [PubMed] [Google Scholar]
  8. Gavioli R., Risso A., Smilovich D., Baldissarro I., Capra M. C., Bargellesi A., Cosulich M. E. CD69 molecule in human neutrophils: its expression and role in signal-transducing mechanisms. Cell Immunol. 1992 Jun;142(1):186–196. doi: 10.1016/0008-8749(92)90279-x. [DOI] [PubMed] [Google Scholar]
  9. Hamann J., Fiebig H., Strauss M. Expression cloning of the early activation antigen CD69, a type II integral membrane protein with a C-type lectin domain. J Immunol. 1993 Jun 1;150(11):4920–4927. [PubMed] [Google Scholar]
  10. Hara T., Jung L. K., Bjorndahl J. M., Fu S. M. Human T cell activation. III. Rapid induction of a phosphorylated 28 kD/32 kD disulfide-linked early activation antigen (EA 1) by 12-o-tetradecanoyl phorbol-13-acetate, mitogens, and antigens. J Exp Med. 1986 Dec 1;164(6):1988–2005. doi: 10.1084/jem.164.6.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kolb H., Kolb-Bachofen V. Nitric oxide: a pathogenetic factor in autoimmunity. Immunol Today. 1992 May;13(5):157–160. doi: 10.1016/0167-5699(92)90118-Q. [DOI] [PubMed] [Google Scholar]
  12. Lanier L. L., Buck D. W., Rhodes L., Ding A., Evans E., Barney C., Phillips J. H. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J Exp Med. 1988 May 1;167(5):1572–1585. doi: 10.1084/jem.167.5.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lowenstein C. J., Snyder S. H. Nitric oxide, a novel biologic messenger. Cell. 1992 Sep 4;70(5):705–707. doi: 10.1016/0092-8674(92)90301-r. [DOI] [PubMed] [Google Scholar]
  14. López-Cabrera M., Santis A. G., Fernández-Ruiz E., Blacher R., Esch F., Sánchez-Mateos P., Sánchez-Madrid F. Molecular cloning, expression, and chromosomal localization of the human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type animal lectin superfamily of signal-transmitting receptors. J Exp Med. 1993 Aug 1;178(2):537–547. doi: 10.1084/jem.178.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mantovani A., Bottazzi B., Colotta F., Sozzani S., Ruco L. The origin and function of tumor-associated macrophages. Immunol Today. 1992 Jul;13(7):265–270. doi: 10.1016/0167-5699(92)90008-U. [DOI] [PubMed] [Google Scholar]
  16. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  17. Needleman P., Turk J., Jakschik B. A., Morrison A. R., Lefkowith J. B. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–102. doi: 10.1146/annurev.bi.55.070186.000441. [DOI] [PubMed] [Google Scholar]
  18. Nishikawa K., Morii T., Ako H., Hamada K., Saito S., Narita N. In vivo expression of CD69 on lung eosinophils in eosinophilic pneumonia: CD69 as a possible activation marker for eosinophils. J Allergy Clin Immunol. 1992 Aug;90(2):169–174. doi: 10.1016/0091-6749(92)90068-d. [DOI] [PubMed] [Google Scholar]
  19. Schnittger S., Hamann J., Dannenberg C., Fiebig H., Strauss M., Fonatsch C. Regional sublocalization of the human CD69 gene to chromosome bands 12p12.3-p13.2, the predicted region of the human natural killer cell gene complex. Eur J Immunol. 1993 Oct;23(10):2711–2713. doi: 10.1002/eji.1830231051. [DOI] [PubMed] [Google Scholar]
  20. Tao X., Stout R. D. T cell-mediated cognate signaling of nitric oxide production by macrophages. Requirements for macrophage activation by plasma membranes isolated from T cells. Eur J Immunol. 1993 Nov;23(11):2916–2921. doi: 10.1002/eji.1830231128. [DOI] [PubMed] [Google Scholar]
  21. Testi R., D'Ambrosio D., De Maria R., Santoni A. The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today. 1994 Oct;15(10):479–483. doi: 10.1016/0167-5699(94)90193-7. [DOI] [PubMed] [Google Scholar]
  22. Testi R., Phillips J. H., Lanier L. L. Constitutive expression of a phosphorylated activation antigen (Leu 23) by CD3bright human thymocytes. J Immunol. 1988 Oct 15;141(8):2557–2563. [PubMed] [Google Scholar]
  23. Testi R., Phillips J. H., Lanier L. L. Leu 23 induction as an early marker of functional CD3/T cell antigen receptor triggering. Requirement for receptor cross-linking, prolonged elevation of intracellular [Ca++] and stimulation of protein kinase C. J Immunol. 1989 Mar 15;142(6):1854–1860. [PubMed] [Google Scholar]
  24. Testi R., Phillips J. H., Lanier L. L. T cell activation via Leu-23 (CD69). J Immunol. 1989 Aug 15;143(4):1123–1128. [PubMed] [Google Scholar]
  25. Testi R., Pulcinelli F. M., Cifone M. G., Botti D., Del Grosso E., Riondino S., Frati L., Gazzaniga P. P., Santoni A. Preferential involvement of a phospholipase A2-dependent pathway in CD69-mediated platelet activation. J Immunol. 1992 May 1;148(9):2867–2871. [PubMed] [Google Scholar]
  26. Testi R., Pulcinelli F., Frati L., Gazzaniga P. P., Santoni A. CD69 is expressed on platelets and mediates platelet activation and aggregation. J Exp Med. 1990 Sep 1;172(3):701–707. doi: 10.1084/jem.172.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
  28. Xie Q. W., Whisnant R., Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med. 1993 Jun 1;177(6):1779–1784. doi: 10.1084/jem.177.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zembala M., Siedlar M., Marcinkiewicz J., Pryjma J. Human monocytes are stimulated for nitric oxide release in vitro by some tumor cells but not by cytokines and lipopolysaccharide. Eur J Immunol. 1994 Feb;24(2):435–439. doi: 10.1002/eji.1830240225. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES