Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Aug;163(2):661–668. doi: 10.1128/jb.163.2.661-668.1985

Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations.

K Skarstad, H B Steen, E Boye
PMCID: PMC219173  PMID: 3894332

Abstract

A computer simulation routine has been made to calculate the DNA distributions of exponentially growing cultures of Escherichia coli. Calculations were based on a previously published model (S. Cooper and C.E. Helmstetter, J. Mol. Biol. 31:519-540, 1968). Simulated distributions were compared with experimental DNA distributions (histograms) recorded by flow cytometry. Cell cycle parameters were determined by varying the parameters to find the best fit of theoretical to experimental histograms. A culture of E. coli B/r A with a doubling time of 27 min was found to have a DNA replication period (C) of 43 min and an average postreplication period (D) of 22 to 23 min. Similar cell cycle parameters were found for a 60-min B/r A culture. Initiations of DNA replication at multiple origins in one and the same cell were shown to be essentially synchronous. A slowly growing B/r A culture (doubling time, 5.5 h) had an average prereplication period (B) of 2.3 h; C = 2.4 h and D = 0.8 h. It was concluded the the C period has a constant duration of 43 min (at 37 degrees C) at fast growth rates (doubling times, less than 1 h) but increases at slow growth rates. Thus, our results obtained with unperturbed exponential cultures in steady state support the model of Cooper and Helmstetter which was based on data obtained with synchronized cells.

Full text

PDF
661

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boye E., Krisch R. E. Induction and repair of double- and single-strand DNA breaks in bacteriophage lambda superinfecting Escherichia coli. Int J Radiat Biol Relat Stud Phys Chem Med. 1980 Feb;37(2):119–133. doi: 10.1080/09553008014550191. [DOI] [PubMed] [Google Scholar]
  2. Boye E., Steen H. B., Skarstad K. Flow cytometry of bacteria: a promising tool in experimental and clinical microbiology. J Gen Microbiol. 1983 Apr;129(4):973–980. doi: 10.1099/00221287-129-4-973. [DOI] [PubMed] [Google Scholar]
  3. Bremer H., Chuang L. Cell division after inhibition of chromosome replication in Escherichia coli. J Theor Biol. 1981 Dec 21;93(4):909–926. doi: 10.1016/0022-5193(81)90347-7. [DOI] [PubMed] [Google Scholar]
  4. Bremer H., Chuang L. The cell cycle in Escherichia coli B/r. J Theor Biol. 1981 Jan 7;88(1):47–81. doi: 10.1016/0022-5193(81)90328-3. [DOI] [PubMed] [Google Scholar]
  5. Bremer H., Churchward G. An examination of the Cooper-Helmstetter theory of DNA replication in bacteria and its underlying assumptions. J Theor Biol. 1977 Dec 21;69(4):645–654. doi: 10.1016/0022-5193(77)90373-3. [DOI] [PubMed] [Google Scholar]
  6. Bremer H., Churchward G. Deoxyribonucleic acid synthesis after inhibition of initiation of rounds of replication in Escherichia coli B/r. J Bacteriol. 1977 May;130(2):692–697. doi: 10.1128/jb.130.2.692-697.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bremer H. Variation of generation times in Escherichia coli populations: its cause and implications. J Gen Microbiol. 1982 Dec;128(12):2865–2876. doi: 10.1099/00221287-128-12-2865. [DOI] [PubMed] [Google Scholar]
  8. Churchward G., Bremer H. Determination of deoxyribonucleic acid replication time in exponentially growing Escherichia coli B/r. J Bacteriol. 1977 Jun;130(3):1206–1213. doi: 10.1128/jb.130.3.1206-1213.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooper S., Helmstetter C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):519–540. doi: 10.1016/0022-2836(68)90425-7. [DOI] [PubMed] [Google Scholar]
  10. Domach M. M., Shuler M. L. Testing of a potential mechanism for E. coli temporal cycle imprecision with a structural model. J Theor Biol. 1984 Feb 21;106(4):577–585. doi: 10.1016/0022-5193(84)90008-0. [DOI] [PubMed] [Google Scholar]
  11. Helmstetter C. E., Pierucci O. DNA synthesis during the division cycle of three substrains of Escherichia coli B/r. J Mol Biol. 1976 Apr 15;102(3):477–486. doi: 10.1016/0022-2836(76)90329-6. [DOI] [PubMed] [Google Scholar]
  12. KOCH A. L., SCHAECHTER M. A model for statistics of the cell division process. J Gen Microbiol. 1962 Nov;29:435–454. doi: 10.1099/00221287-29-3-435. [DOI] [PubMed] [Google Scholar]
  13. KUBITSCHEK H. E. Normal distribution of cell generation rate. Exp Cell Res. 1962 Mar;26:439–450. doi: 10.1016/0014-4827(62)90150-7. [DOI] [PubMed] [Google Scholar]
  14. Koppes L. H., Woldringh C. L., Nanninga N. Size variations and correlation of different cell cycle events in slow-growing Escherichia coli. J Bacteriol. 1978 May;134(2):423–433. doi: 10.1128/jb.134.2.423-433.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kubitschek H. E. Estimation of the D period from residual division after exposure of exponential phase bacteria to chloramphenicol. Mol Gen Genet. 1974;135(2):123–130. doi: 10.1007/BF00264780. [DOI] [PubMed] [Google Scholar]
  16. Kubitschek H. E., Newman C. N. Chromosome replication during the division cycle in slowly growing, steady-state cultures of three Escherichia coli B/r strains. J Bacteriol. 1978 Oct;136(1):179–190. doi: 10.1128/jb.136.1.179-190.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kubitschek H. E. The distribution of cell generation times. Cell Tissue Kinet. 1971 Mar;4(2):113–122. doi: 10.1111/j.1365-2184.1971.tb01522.x. [DOI] [PubMed] [Google Scholar]
  18. Lindmo T. Kinetics of protein and DNA synthesis studied by mathematical modelling of flow cytometric protein and DNA histograms. Cell Tissue Kinet. 1982 Mar;15(2):197–211. doi: 10.1111/j.1365-2184.1982.tb01038.x. [DOI] [PubMed] [Google Scholar]
  19. Meselson M., Stahl F. W. THE REPLICATION OF DNA IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):671–682. doi: 10.1073/pnas.44.7.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Newman C. N., Kubitschek H. E. Variation in periodic replication of the chromosome in Escherichia coli B/rTT. J Mol Biol. 1978 Jun 5;121(4):461–471. doi: 10.1016/0022-2836(78)90394-7. [DOI] [PubMed] [Google Scholar]
  21. SCHAECHTER M., WILLIAMSON J. P., HOOD J. R., Jr, KOCH A. L. Growth, cell and nuclear divisions in some bacteria. J Gen Microbiol. 1962 Nov;29:421–434. doi: 10.1099/00221287-29-3-421. [DOI] [PubMed] [Google Scholar]
  22. Skarstad K., Steen H. B., Boye E. Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry. J Bacteriol. 1983 May;154(2):656–662. doi: 10.1128/jb.154.2.656-662.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steen H. B. A microscope-based flow cytophotometer. Histochem J. 1983 Feb;15(2):147–160. doi: 10.1007/BF01042283. [DOI] [PubMed] [Google Scholar]
  24. Steen H. B., Boye E. Escherichia coli growth studied by dual-parameter flow cytophotometry. J Bacteriol. 1981 Feb;145(2):1091–1094. doi: 10.1128/jb.145.2.1091-1094.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Steen H. B., Boye E., Skarstad K., Bloom B., Godal T., Mustafa S. Applications of flow cytometry on bacteria: cell cycle kinetics, drug effects, and quantitation of antibody binding. Cytometry. 1982 Jan;2(4):249–257. doi: 10.1002/cyto.990020409. [DOI] [PubMed] [Google Scholar]
  26. Steen H. B., Lindmo T. Flow cytometry: a high-resolution instrument for everyone. Science. 1979 Apr 27;204(4391):403–404. doi: 10.1126/science.441727. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES