Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Dec 1;180(6):2113–2123. doi: 10.1084/jem.180.6.2113

Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation

PMCID: PMC2191773  PMID: 7964487

Abstract

We report the purification of a protease from tumor cells undergoing apoptosis that is involved in activating DNA fragmentation. Initial studies revealed that two inhibitors of serine proteases, N-1- tosylamide-2-phenylethylchloromethyl ketone and carbobenzoxy-Ala-Ala- borophe (DK120), suppressed tumor necrosis factor or ultraviolet (UV) light-induced DNA fragmentation in the U937 histiocytic lymphoma as well as UV light-induced DNA fragmentation in the BT-20 breast carcinoma, HL-60 myelocytic leukemia, and 3T3 fibroblasts. The protease was purified by affinity chromatography with DK120 as ligand and showed high activity on a synthetic substrate preferred by elastase-like enzymes (Ala-Ala-Pro-Val p-nitroanilide), but was inactive on the trypsin substrate, N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester, or the chymotrypsin substrate, Ala-Ala-Pro-Phe p-nitroanilide. The activity of the DK120-binding protease purified from U937 cells undergoing apoptosis was increased approximately 10-fold over that recovered from normal cells. Further purification to homogeneity by heparin-Sepharose affinity chromatography followed by reverse phase high-performance liquid chromatography revealed a single band of 24 kD on a silver-stained sodium dodecyl sulfate gel. In addition to protease activity, the purified enzyme induced DNA fragmentation into multiples of 180 basepairs in isolated U937 nuclei. These findings suggest the 24- kD protease is a novel enzyme that activates DNA fragmentation in U937 cells undergoing apoptosis.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal S., Drysdale B. E., Shin H. S. Tumor necrosis factor-mediated cytotoxicity involves ADP-ribosylation. J Immunol. 1988 Jun 15;140(12):4187–4192. [PubMed] [Google Scholar]
  2. Berger N. A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985 Jan;101(1):4–15. [PubMed] [Google Scholar]
  3. Billings P. C., St Clair W., Owen A. J., Kennedy A. R. Potential intracellular target proteins of the anticarcinogenic Bowman Birk protease inhibitor identified by affinity chromatography. Cancer Res. 1988 Apr 1;48(7):1798–1802. [PubMed] [Google Scholar]
  4. Bleackley R. C., Lobe C. G., Duggan B., Ehrman N., Fregeau C., Meier M., Letellier M., Havele C., Shaw J., Paetkau V. The isolation and characterization of a family of serine protease genes expressed in activated cytotoxic T lymphocytes. Immunol Rev. 1988 Mar;103:5–19. doi: 10.1111/j.1600-065x.1988.tb00746.x. [DOI] [PubMed] [Google Scholar]
  5. Bruno S., Del Bino G., Lassota P., Giaretti W., Darzynkiewicz Z. Inhibitors of proteases prevent endonucleolysis accompanying apoptotic death of HL-60 leukemic cells and normal thymocytes. Leukemia. 1992 Nov;6(11):1113–1120. [PubMed] [Google Scholar]
  6. Carson D. A., Seto S., Wasson D. B., Carrera C. J. DNA strand breaks, NAD metabolism, and programmed cell death. Exp Cell Res. 1986 Jun;164(2):273–281. doi: 10.1016/0014-4827(86)90028-5. [DOI] [PubMed] [Google Scholar]
  7. Cohen J. J., Duke R. C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984 Jan;132(1):38–42. [PubMed] [Google Scholar]
  8. Devary Y., Gottlieb R. A., Smeal T., Karin M. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell. 1992 Dec 24;71(7):1081–1091. doi: 10.1016/s0092-8674(05)80058-3. [DOI] [PubMed] [Google Scholar]
  9. Duke R. C., Chervenak R., Cohen J. J. Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6361–6365. doi: 10.1073/pnas.80.20.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerschenson L. E., Rotello R. J. Apoptosis: a different type of cell death. FASEB J. 1992 Apr;6(7):2450–2455. doi: 10.1096/fasebj.6.7.1563596. [DOI] [PubMed] [Google Scholar]
  11. Hasegawa Y., Bonavida B. Calcium-independent pathway of tumor necrosis factor-mediated lysis of target cells. J Immunol. 1989 Apr 15;142(8):2670–2676. [PubMed] [Google Scholar]
  12. Hayes M. P., Berrebi G. A., Henkart P. A. Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J Exp Med. 1989 Sep 1;170(3):933–946. doi: 10.1084/jem.170.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hogquist K. A., Nett M. A., Unanue E. R., Chaplin D. D. Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8485–8489. doi: 10.1073/pnas.88.19.8485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Howard A. D., Kostura M. J., Thornberry N., Ding G. J., Limjuco G., Weidner J., Salley J. P., Hogquist K. A., Chaplin D. D., Mumford R. A. IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31-kDa IL-1 alpha. J Immunol. 1991 Nov 1;147(9):2964–2969. [PubMed] [Google Scholar]
  15. Kanter P., Leister K. J., Tomei L. D., Wenner P. A., Wenner C. E. Epidermal growth factor and tumor promoters prevent DNA fragmentation by different mechanisms. Biochem Biophys Res Commun. 1984 Jan 30;118(2):392–399. doi: 10.1016/0006-291x(84)91315-9. [DOI] [PubMed] [Google Scholar]
  16. Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., Poirier G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993 Sep 1;53(17):3976–3985. [PubMed] [Google Scholar]
  17. Kaufmann S. H. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res. 1989 Nov 1;49(21):5870–5878. [PubMed] [Google Scholar]
  18. Kinder D. H., Elstad C. A., Meadows G. G., Ames M. M. Antimetastatic activity of boro-amino acid analog protease inhibitors against B16BL6 melanoma in vivo. Invasion Metastasis. 1992;12(5-6):309–319. [PubMed] [Google Scholar]
  19. Kinder D. H., Katzenellenbogen J. A. Acylamino boronic acids and difluoroborane analogues of amino acids: potent inhibitors of chymotrypsin and elastase. J Med Chem. 1985 Dec;28(12):1917–1925. doi: 10.1021/jm00150a027. [DOI] [PubMed] [Google Scholar]
  20. Kostura M. J., Tocci M. J., Limjuco G., Chin J., Cameron P., Hillman A. G., Chartrain N. A., Schmidt J. A. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5227–5231. doi: 10.1073/pnas.86.14.5227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kumar S., Baglioni C. Protection from tumor necrosis factor-mediated cytolysis by overexpression of plasminogen activator inhibitor type-2. J Biol Chem. 1991 Nov 5;266(31):20960–20964. [PubMed] [Google Scholar]
  22. Kyprianou N., English H. F., Isaacs J. T. Activation of a Ca2+-Mg2+-dependent endonuclease as an early event in castration-induced prostatic cell death. Prostate. 1988;13(2):103–117. doi: 10.1002/pros.2990130203. [DOI] [PubMed] [Google Scholar]
  23. Laster S. M., Wood J. G., Gooding L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol. 1988 Oct 15;141(8):2629–2634. [PubMed] [Google Scholar]
  24. Martin S. J., Lennon S. V., Bonham A. M., Cotter T. G. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J Immunol. 1990 Sep 15;145(6):1859–1867. [PubMed] [Google Scholar]
  25. McConkey D. J., Aguilar-Santelises M., Hartzell P., Eriksson I., Mellstedt H., Orrenius S., Jondal M. Induction of DNA fragmentation in chronic B-lymphocytic leukemia cells. J Immunol. 1991 Feb 1;146(3):1072–1076. [PubMed] [Google Scholar]
  26. McConkey D. J., Chow S. C., Orrenius S., Jondal M. NK cell-induced cytotoxicity is dependent on a Ca2+ increase in the target. FASEB J. 1990 Jun;4(9):2661–2664. doi: 10.1096/fasebj.4.9.2347464. [DOI] [PubMed] [Google Scholar]
  27. McConkey D. J., Hartzell P., Jondal M., Orrenius S. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C. J Biol Chem. 1989 Aug 15;264(23):13399–13402. [PubMed] [Google Scholar]
  28. Miura M., Zhu H., Rotello R., Hartwieg E. A., Yuan J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell. 1993 Nov 19;75(4):653–660. doi: 10.1016/0092-8674(93)90486-a. [DOI] [PubMed] [Google Scholar]
  29. Poe M., Blake J. T., Boulton D. A., Gammon M., Sigal N. H., Wu J. K., Zweerink H. J. Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J Biol Chem. 1991 Jan 5;266(1):98–103. [PubMed] [Google Scholar]
  30. Rodríguez-Tarduchy G., López-Rivas A. Phorbol esters inhibit apoptosis in IL-2-dependent T lymphocytes. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1069–1075. doi: 10.1016/0006-291x(89)91778-6. [DOI] [PubMed] [Google Scholar]
  31. Ruggiero V., Johnson S. E., Baglioni C. Protection from tumor necrosis factor cytotoxicity by protease inhibitors. Cell Immunol. 1987 Jul;107(2):317–325. doi: 10.1016/0008-8749(87)90240-1. [DOI] [PubMed] [Google Scholar]
  32. Sarin A., Adams D. H., Henkart P. A. Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J Exp Med. 1993 Nov 1;178(5):1693–1700. doi: 10.1084/jem.178.5.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sellins K. S., Cohen J. J. Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol. 1987 Nov 15;139(10):3199–3206. [PubMed] [Google Scholar]
  34. Senior R. M., Campbell E. J., Landis J. A., Cox F. R., Kuhn C., Koren H. S. Elastase of U-937 monocytelike cells. Comparisons with elastases derived from human monocytes and neutrophils and murine macrophagelike cells. J Clin Invest. 1982 Feb;69(2):384–393. doi: 10.1172/JCI110462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shi L., Kam C. M., Powers J. C., Aebersold R., Greenberg A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med. 1992 Dec 1;176(6):1521–1529. doi: 10.1084/jem.176.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shi L., Kraut R. P., Aebersold R., Greenberg A. H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med. 1992 Feb 1;175(2):553–566. doi: 10.1084/jem.175.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shi L., Nishioka W. K., Th'ng J., Bradbury E. M., Litchfield D. W., Greenberg A. H. Premature p34cdc2 activation required for apoptosis. Science. 1994 Feb 25;263(5150):1143–1145. doi: 10.1126/science.8108732. [DOI] [PubMed] [Google Scholar]
  38. Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Howard A. D., Kostura M. J., Miller D. K., Molineaux S. M., Weidner J. R., Aunins J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992 Apr 30;356(6372):768–774. doi: 10.1038/356768a0. [DOI] [PubMed] [Google Scholar]
  39. Ucker D. S., Ashwell J. D., Nickas G. Activation-driven T cell death. I. Requirements for de novo transcription and translation and association with genome fragmentation. J Immunol. 1989 Dec 1;143(11):3461–3469. [PubMed] [Google Scholar]
  40. Uckun F. M., Tuel-Ahlgren L., Song C. W., Waddick K., Myers D. E., Kirihara J., Ledbetter J. A., Schieven G. L. Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9005–9009. doi: 10.1073/pnas.89.19.9005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wright S. C., Kumar P., Tam A. W., Shen N., Varma M., Larrick J. W. Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells. J Cell Biochem. 1992 Apr;48(4):344–355. doi: 10.1002/jcb.240480403. [DOI] [PubMed] [Google Scholar]
  42. Wright S. C., Zheng H., Zhong J., Torti F. M., Larrick J. W. Role of protein phosphorylation in TNF-induced apoptosis: phosphatase inhibitors synergize with TNF to activate DNA fragmentation in normal as well as TNF-resistant U937 variants. J Cell Biochem. 1993 Nov;53(3):222–233. doi: 10.1002/jcb.240530307. [DOI] [PubMed] [Google Scholar]
  43. Wright S. C., Zhong J., Larrick J. W. Inhibition of apoptosis as a mechanism of tumor promotion. FASEB J. 1994 Jun;8(9):654–660. doi: 10.1096/fasebj.8.9.8005393. [DOI] [PubMed] [Google Scholar]
  44. Wright S. C., Zhong J., Zheng H., Larrick J. W. Nicotine inhibition of apoptosis suggests a role in tumor promotion. FASEB J. 1993 Aug;7(11):1045–1051. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES