Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Jan 1;181(1):151–159. doi: 10.1084/jem.181.1.151

Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein

PMCID: PMC2191854  PMID: 7528766

Abstract

Normal host cells are protected from the destructive action of complement by cell surface complement regulatory proteins. In humans, decay-accelerating factor (DAF) and membrane cofactor protein (MCP) play such a biologic role by inhibiting C3 and C5 convertases. DAF and MCP accomplish this task by specific mechanisms designated decay- accelerating activity and factor I cofactor activity, respectively. In other species, including mice, structural and/or functional homologues of these proteins are not yet well characterized. Previous studies have shown that the mouse protein Crry/p65 has certain characteristics of self-protecting complement regulatory proteins. For example, Crry/p65 is expressed on a wide variety of murine cells, and when expressed on human K562 erythroleukemic cells, it prevents deposition of mouse C3 fragments on the cell surface during activation of either the classical or alternative complement pathway. We have now studied factor I cofactor and decay-accelerating activities of Crry/p65. Recombinant Crry/p65 demonstrates cofactor activity for factor I-mediated cleavage of both mouse C3b and C4b. Surprisingly, Crry/p65 also exhibits decay- accelerating activity for the classical pathway C3 convertase strongly and for the alternative pathway C3 convertase weakly. Therefore, mouse Crry/p65 uses the specific mechanisms of both human MCP and DAF. Although Crry/p65, like MCP and DAF, contains tandem short consensus repeats (SCR) characteristic of C3/C4 binding proteins, Crry/p65 is not considered to be a genetic homologue of either MCP or DAF. Thus, Crry/p65 is an example of evolutionary conservation of two specific activities in a single unique protein in one species that are dispersed to individual proteins in another. We propose that the repeating SCR motif in this family has allowed this unusual process of evolution to occur, perhaps driven by the use of MCP and DAF as receptors by human pathogens such as the measles virus.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aegerter-Shaw M., Cole J. L., Klickstein L. B., Wong W. W., Fearon D. T., Lalley P. A., Weis J. H. Expansion of the complement receptor gene family. Identification in the mouse of two new genes related to the CR1 and CR2 gene family. J Immunol. 1987 May 15;138(10):3488–3494. [PubMed] [Google Scholar]
  2. Davitz M. A., Low M. G., Nussenzweig V. Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). Selective modification of a complement regulatory protein. J Exp Med. 1986 May 1;163(5):1150–1161. doi: 10.1084/jem.163.5.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dörig R. E., Marcil A., Chopra A., Richardson C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993 Oct 22;75(2):295–305. doi: 10.1016/0092-8674(93)80071-l. [DOI] [PubMed] [Google Scholar]
  4. Finberg R. W., White W., Nicholson-Weller A. Decay-accelerating factor expression on either effector or target cells inhibits cytotoxicity by human natural killer cells. J Immunol. 1992 Sep 15;149(6):2055–2060. [PubMed] [Google Scholar]
  5. Foley S., Li B., Dehoff M., Molina H., Holers V. M. Mouse Crry/p65 is a regulator of the alternative pathway of complement activation. Eur J Immunol. 1993 Jun;23(6):1381–1384. doi: 10.1002/eji.1830230630. [DOI] [PubMed] [Google Scholar]
  6. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  7. Fujisaku A., Harley J. B., Frank M. B., Gruner B. A., Frazier B., Holers V. M. Genomic organization and polymorphisms of the human C3d/Epstein-Barr virus receptor. J Biol Chem. 1989 Feb 5;264(4):2118–2125. [PubMed] [Google Scholar]
  8. Funabashi K., Okada N., Matsuo S., Yamamoto T., Morgan B. P., Okada H. Tissue distribution of complement regulatory membrane proteins in rats. Immunology. 1994 Mar;81(3):444–451. [PMC free article] [PubMed] [Google Scholar]
  9. Holers V. M., Kinoshita T., Molina H. The evolution of mouse and human complement C3-binding proteins: divergence of form but conservation of function. Immunol Today. 1992 Jun;13(6):231–236. doi: 10.1016/0167-5699(92)90160-9. [DOI] [PubMed] [Google Scholar]
  10. Holguin M. H., Kurtz C. B., Parker C. J., Weis J. J., Weis J. H. Loss of human CR1- and murine Crry-like exons in human CR2 transcripts due to CR2 gene mutations. J Immunol. 1990 Sep 15;145(6):1776–1781. [PubMed] [Google Scholar]
  11. Holguin M. H., Parker C. J. Membrane inhibitor of reactive lysis. Curr Top Microbiol Immunol. 1992;178:61–85. doi: 10.1007/978-3-642-77014-2_5. [DOI] [PubMed] [Google Scholar]
  12. Holmes C. H., Simpson K. L. Complement and pregnancy: new insights into the immunobiology of the fetomaternal relationship. Baillieres Clin Obstet Gynaecol. 1992 Sep;6(3):439–460. doi: 10.1016/s0950-3552(05)80005-7. [DOI] [PubMed] [Google Scholar]
  13. Hourcade D., Holers V. M., Atkinson J. P. The regulators of complement activation (RCA) gene cluster. Adv Immunol. 1989;45:381–416. doi: 10.1016/s0065-2776(08)60697-5. [DOI] [PubMed] [Google Scholar]
  14. Hourcade D., Miesner D. R., Atkinson J. P., Holers V. M. Identification of an alternative polyadenylation site in the human C3b/C4b receptor (complement receptor type 1) transcriptional unit and prediction of a secreted form of complement receptor type 1. J Exp Med. 1988 Oct 1;168(4):1255–1270. doi: 10.1084/jem.168.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kai S., Fujita T., Gigli I., Nussenzweig V. Mouse C3b/C4b inactivator: purification and properties. J Immunol. 1980 Dec;125(6):2409–2415. [PubMed] [Google Scholar]
  16. Kalli K. R., Fearon D. T. Binding of C3b and C4b by the CR1-like site in murine CR1. J Immunol. 1994 Mar 15;152(6):2899–2903. [PubMed] [Google Scholar]
  17. Kalli K. R., Hsu P. H., Bartow T. J., Ahearn J. M., Matsumoto A. K., Klickstein L. B., Fearon D. T. Mapping of the C3b-binding site of CR1 and construction of a (CR1)2-F(ab')2 chimeric complement inhibitor. J Exp Med. 1991 Dec 1;174(6):1451–1460. doi: 10.1084/jem.174.6.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kameyoshi Y., Matsushita M., Okada H. Murine membrane inhibitor of complement which accelerates decay of human C3 convertase. Immunology. 1989 Dec;68(4):439–444. [PMC free article] [PubMed] [Google Scholar]
  19. Kingsmore S. F., Vik D. P., Kurtz C. B., Leroy P., Tack B. F., Weis J. H., Seldin M. F. Genetic organization of complement receptor-related genes in the mouse. J Exp Med. 1989 Apr 1;169(4):1479–1484. doi: 10.1084/jem.169.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kinoshita T., Lavoie S., Nussenzweig V. Regulatory proteins for the activated third and fourth components of complement (C3b and C4b) in mice. II. Identification and properties of complement receptor type 1 (CR1). J Immunol. 1985 Apr;134(4):2564–2570. [PubMed] [Google Scholar]
  21. Kinoshita T., Nussenzweig V. Regulatory proteins for the activated third and fourth components of complement (C3b and C4b) in mice. I. Isolation and characterization of factor H: the serum cofactor for the C3b/C4b inactivator (factor I). J Immunol Methods. 1984 Jul 6;71(2):247–257. doi: 10.1016/0022-1759(84)90071-1. [DOI] [PubMed] [Google Scholar]
  22. Kinoshita T., Takeda J., Hong K., Kozono H., Sakai H., Inoue K. Monoclonal antibodies to mouse complement receptor type 1 (CR1). Their use in a distribution study showing that mouse erythrocytes and platelets are CR1-negative. J Immunol. 1988 May 1;140(9):3066–3072. [PubMed] [Google Scholar]
  23. Kinoshita T., Thyphronitis G., Tsokos G. C., Finkelman F. D., Hong K., Sakai H., Inoue K. Characterization of murine complement receptor type 2 and its immunological cross-reactivity with type 1 receptor. Int Immunol. 1990;2(7):651–659. doi: 10.1093/intimm/2.7.651. [DOI] [PubMed] [Google Scholar]
  24. Klickstein L. B., Bartow T. J., Miletic V., Rabson L. D., Smith J. A., Fearon D. T. Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis. J Exp Med. 1988 Nov 1;168(5):1699–1717. doi: 10.1084/jem.168.5.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kurtz C. B., O'Toole E., Christensen S. M., Weis J. H. The murine complement receptor gene family. IV. Alternative splicing of Cr2 gene transcripts predicts two distinct gene products that share homologous domains with both human CR2 and CR1. J Immunol. 1990 May 1;144(9):3581–3591. [PubMed] [Google Scholar]
  26. Li B., Sallee C., Dehoff M., Foley S., Molina H., Holers V. M. Mouse Crry/p65. Characterization of monoclonal antibodies and the tissue distribution of a functional homologue of human MCP and DAF. J Immunol. 1993 Oct 15;151(8):4295–4305. [PubMed] [Google Scholar]
  27. Liszewski M. K., Atkinson J. P. Membrane cofactor protein. Curr Top Microbiol Immunol. 1992;178:45–60. doi: 10.1007/978-3-642-77014-2_4. [DOI] [PubMed] [Google Scholar]
  28. Lublin D. M., Atkinson J. P. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol. 1989;7:35–58. doi: 10.1146/annurev.iy.07.040189.000343. [DOI] [PubMed] [Google Scholar]
  29. Miyata T., Yamada N., Iida Y., Nishimura J., Takeda J., Kitani T., Kinoshita T. Abnormalities of PIG-A transcripts in granulocytes from patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1994 Jan 27;330(4):249–255. doi: 10.1056/NEJM199401273300404. [DOI] [PubMed] [Google Scholar]
  30. Molina H., Kinoshita T., Inoue K., Carel J. C., Holers V. M. A molecular and immunochemical characterization of mouse CR2. Evidence for a single gene model of mouse complement receptors 1 and 2. J Immunol. 1990 Nov 1;145(9):2974–2983. [PubMed] [Google Scholar]
  31. Molina H., Kinoshita T., Webster C. B., Holers V. M. Analysis of C3b/C3d binding sites and factor I cofactor regions within mouse complement receptors 1 and 2. J Immunol. 1994 Jul 15;153(2):789–795. [PubMed] [Google Scholar]
  32. Molina H., Wong W., Kinoshita T., Brenner C., Foley S., Holers V. M. Distinct receptor and regulatory properties of recombinant mouse complement receptor 1 (CR1) and Crry, the two genetic homologues of human CR1. J Exp Med. 1992 Jan 1;175(1):121–129. doi: 10.1084/jem.175.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moore M. D., Cooper N. R., Tack B. F., Nemerow G. R. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9194–9198. doi: 10.1073/pnas.84.24.9194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Morgan B. P., Meri S. Membrane proteins that protect against complement lysis. Springer Semin Immunopathol. 1994;15(4):369–396. doi: 10.1007/BF01837366. [DOI] [PubMed] [Google Scholar]
  35. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol. 1993 Oct;67(10):6025–6032. doi: 10.1128/jvi.67.10.6025-6032.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nelson R. A., Jr, Jensen J., Gigli I., Tamura N. Methods for the separation, purification and measurement of nine components of hemolytic complement in guinea-pig serum. Immunochemistry. 1966 Mar;3(2):111–135. doi: 10.1016/0019-2791(66)90292-8. [DOI] [PubMed] [Google Scholar]
  37. Nicholson-Weller A., Burge J., Fearon D. T., Weller P. F., Austen K. F. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol. 1982 Jul;129(1):184–189. [PubMed] [Google Scholar]
  38. Nowicki B., Hart A., Coyne K. E., Lublin D. M., Nowicki S. Short consensus repeat-3 domain of recombinant decay-accelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cell-cell interaction. J Exp Med. 1993 Dec 1;178(6):2115–2121. doi: 10.1084/jem.178.6.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Paul M. S., Aegerter M., Cepek K., Miller M. D., Weis J. H. The murine complement receptor gene family. III. The genomic and transcriptional complexity of the Crry and Crry-ps genes. J Immunol. 1990 Mar 1;144(5):1988–1996. [PubMed] [Google Scholar]
  40. Paul M. S., Aegerter M., O'Brien S. E., Kurtz C. B., Weis J. H. The murine complement receptor gene family. Analysis of mCRY gene products and their homology to human CR1. J Immunol. 1989 Jan 15;142(2):582–589. [PubMed] [Google Scholar]
  41. Post T. W., Arce M. A., Liszewski M. K., Thompson E. S., Atkinson J. P., Lublin D. M. Structure of the gene for human complement protein decay accelerating factor. J Immunol. 1990 Jan 15;144(2):740–744. [PubMed] [Google Scholar]
  42. Rooney I. A., Atkinson J. P., Krul E. S., Schonfeld G., Polakoski K., Saffitz J. E., Morgan B. P. Physiologic relevance of the membrane attack complex inhibitory protein CD59 in human seminal plasma: CD59 is present on extracellular organelles (prostasomes), binds cell membranes, and inhibits complement-mediated lysis. J Exp Med. 1993 May 1;177(5):1409–1420. doi: 10.1084/jem.177.5.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Seya T., Hara T., Matsumoto M., Sugita Y., Akedo H. Complement-mediated tumor cell damage induced by antibodies against membrane cofactor protein (MCP, CD46). J Exp Med. 1990 Dec 1;172(6):1673–1680. doi: 10.1084/jem.172.6.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Seya T., Turner J. R., Atkinson J. P. Purification and characterization of a membrane protein (gp45-70) that is a cofactor for cleavage of C3b and C4b. J Exp Med. 1986 Apr 1;163(4):837–855. doi: 10.1084/jem.163.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tack B. D., Prahl J. W. Third component of human complement: purification from plasma and physicochemical characterization. Biochemistry. 1976 Oct 5;15(20):4513–4521. doi: 10.1021/bi00665a028. [DOI] [PubMed] [Google Scholar]
  46. Takizawa H., Okada N., Okada H. Complement inhibitor of rat cell membrane resembling mouse Crry/p65. J Immunol. 1994 Mar 15;152(6):3032–3038. [PubMed] [Google Scholar]
  47. Vik D. P., Wong W. W. Structure of the gene for the F allele of complement receptor type 1 and sequence of the coding region unique to the S allele. J Immunol. 1993 Dec 1;151(11):6214–6224. [PubMed] [Google Scholar]
  48. Weis J. J., Toothaker L. E., Smith J. A., Weis J. H., Fearon D. T. Structure of the human B lymphocyte receptor for C3d and the Epstein-Barr virus and relatedness to other members of the family of C3/C4 binding proteins. J Exp Med. 1988 Mar 1;167(3):1047–1066. doi: 10.1084/jem.167.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wong W. W., Fearon D. T. p65: A C3b-binding protein on murine cells that shares antigenic determinants with the human C3b receptor (CR1) and is distinct from murine C3b receptor. J Immunol. 1985 Jun;134(6):4048–4056. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES