Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Mar 1;181(3):915–926. doi: 10.1084/jem.181.3.915

Pocket 4 of the HLA-DR(alpha,beta 1*0401) molecule is a major determinant of T cells recognition of peptide

PMCID: PMC2191901  PMID: 7869051

Abstract

To investigate the functional roles of individual HLA-DR residues in T cell recognition, transfectants expressing wild-type or mutant DR(alpha,beta 1*0401) molecules with single amino acid substitutions at 14 polymorphic positions of the DR beta 1*0401 chain or 19 positions of the DR alpha chain were used as antigen-presenting cells for five T cell clones specific for the influenza hemagglutinin peptide, HA307-19. Of the six polymorphic positions in the DR beta floor that were examined, mutations at only two positions eliminated T cell recognition: positions 13 (four clones) and 28 (one clone). In contrast, individual mutations at DR beta positions 70, 71, 78, and 86 on the alpha helix eliminated recognition by each of the clones, and mutations at positions 74 and 67 eliminated recognition by four and two clones, respectively. Most of the DR alpha mutations had minimal or no effect on most of the clones, although one clone was very sensitive to changes in the DR alpha chain, with loss of recognition in response to 10 mutants. Mutants that abrogated recognition by all of the clones were assessed for peptide binding, and only the beta 86 mutation drastically decreased peptide binding. Single amino acid substitutions at polymorphic positions in the central part of the DR beta alpha helix disrupted T cell recognition much more frequently than substitutions in the floor, suggesting that DR beta residues on the alpha helix make relatively greater contributions than those in the floor to the ability of the DR(alpha,beta 1*0401) molecule to present HA307-19. The data indicate that DR beta residues 13, 70, 71, 74, and 78, which are located in pocket 4 of the peptide binding site in the crystal structure of the DR1 molecule, exert a major and disproportionate influence on the outcome of T cell recognition, compared with other polymorphic residues.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addis J. B., Tisch R., Falk J. A., Letarte M. The analysis with monoclonal antibodies of the heterogeneity of Ia glycoproteins on chronic lymphocytic leukemia cells. J Immunol. 1982 Nov;129(5):2033–2039. [PubMed] [Google Scholar]
  2. Barber L. D., Bal V., Lamb J. R., O'Hehir R. E., Yendle J., Hancock R. J., Lechler R. I. Contribution of T-cell receptor-contacting and peptide-binding residues of the class II molecule HLA-DR4 Dw10 to serologic and antigen-specific T-cell recognition. Hum Immunol. 1991 Oct;32(2):110–118. doi: 10.1016/0198-8859(91)90107-k. [DOI] [PubMed] [Google Scholar]
  3. Brown J. H., Jardetzky T. S., Gorga J. C., Stern L. J., Urban R. G., Strominger J. L., Wiley D. C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993 Jul 1;364(6432):33–39. doi: 10.1038/364033a0. [DOI] [PubMed] [Google Scholar]
  4. Brown J. H., Jardetzky T., Saper M. A., Samraoui B., Bjorkman P. J., Wiley D. C. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature. 1988 Apr 28;332(6167):845–850. doi: 10.1038/332845a0. [DOI] [PubMed] [Google Scholar]
  5. Bruccoleri R. E., Karplus M., McCammon J. A. The hinge-bending mode of a lysozyme-inhibitor complex. Biopolymers. 1986 Sep;25(9):1767–1802. doi: 10.1002/bip.360250916. [DOI] [PubMed] [Google Scholar]
  6. Busch R., Hill C. M., Hayball J. D., Lamb J. R., Rothbard J. B. Effect of natural polymorphism at residue 86 of the HLA-DR beta chain on peptide binding. J Immunol. 1991 Aug 15;147(4):1292–1298. [PubMed] [Google Scholar]
  7. Busch R., Strang G., Howland K., Rothbard J. B. Degenerate binding of immunogenic peptides to HLA-DR proteins on B cell surfaces. Int Immunol. 1990;2(5):443–451. doi: 10.1093/intimm/2.5.443. [DOI] [PubMed] [Google Scholar]
  8. Coppin H. L., Carmichael P., Lombardi G., L'Faqihi F. E., Salter R., Parham P., Lechler R. I., de Preval C. Position 71 in the alpha helix of the DR beta domain is predicted to influence peptide binding and plays a central role in allorecognition. Eur J Immunol. 1993 Feb;23(2):343–349. doi: 10.1002/eji.1830230207. [DOI] [PubMed] [Google Scholar]
  9. Dellabona P., Peccoud J., Kappler J., Marrack P., Benoist C., Mathis D. Superantigens interact with MHC class II molecules outside of the antigen groove. Cell. 1990 Sep 21;62(6):1115–1121. doi: 10.1016/0092-8674(90)90388-u. [DOI] [PubMed] [Google Scholar]
  10. Demotz S., Barbey C., Corradin G., Amoroso A., Lanzavecchia A. The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86. Eur J Immunol. 1993 Feb;23(2):425–432. doi: 10.1002/eji.1830230219. [DOI] [PubMed] [Google Scholar]
  11. Drover S., Marshall W. H., Kwok W. W., Nepom G. T., Karr R. W. Amino acids in the peptide-binding groove influence an antibody-defined, disease-associated HLA-DR epitope. Scand J Immunol. 1994 Jun;39(6):539–550. doi: 10.1111/j.1365-3083.1994.tb03411.x. [DOI] [PubMed] [Google Scholar]
  12. Ehrich E. W., Devaux B., Rock E. P., Jorgensen J. L., Davis M. M., Chien Y. H. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J Exp Med. 1993 Aug 1;178(2):713–722. doi: 10.1084/jem.178.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fu X. T., Karr R. W. HLA-DR alpha chain residues located on the outer loops are involved in nonpolymorphic and polymorphic antibody-binding epitopes. Hum Immunol. 1994 Apr;39(4):253–260. doi: 10.1016/0198-8859(94)90268-2. [DOI] [PubMed] [Google Scholar]
  14. Fu X. T., Yu W. Y., Alber C., Benson C., Watts R., Nordwig H., Johnson J. P., Knowles R. W., Karr R. W. Identification of residues involved in polymorphic antibody binding epitopes on HLA-DR molecules. Hum Immunol. 1992 Jan;33(1):47–56. doi: 10.1016/0198-8859(92)90051-n. [DOI] [PubMed] [Google Scholar]
  15. Geluk A., Bloemhoff W., De Vries R. R., Ottenhoff T. H. Binding of a major T cell epitope of mycobacteria to a specific pocket within HLA-DRw17(DR3) molecules. Eur J Immunol. 1992 Jan;22(1):107–113. doi: 10.1002/eji.1830220117. [DOI] [PubMed] [Google Scholar]
  16. Gregersen P. K., Shen M., Song Q. L., Merryman P., Degar S., Seki T., Maccari J., Goldberg D., Murphy H., Schwenzer J. Molecular diversity of HLA-DR4 haplotypes. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2642–2646. doi: 10.1073/pnas.83.8.2642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hammond S. A., Obah E., Stanhope P., Monell C. R., Strand M., Robbins F. M., Bias W. B., Karr R. W., Koenig S., Siliciano R. F. Characterization of a conserved T cell epitope in HIV-1 gp41 recognized by vaccine-induced human cytolytic T cells. J Immunol. 1991 Mar 1;146(5):1470–1477. [PubMed] [Google Scholar]
  18. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  19. Ishikawa N., Kasahara M., Ikeda H., Ogasawara K., Hawkin S., Takenouchi T., Wakisaka A., Kikuchi Y., Aizawa M. Demonstration of structural polymorphism among MB3 light chains by two-dimensional gel electrophoresis. J Immunol. 1985 Jan;134(1):417–422. [PubMed] [Google Scholar]
  20. Karr R. W., Gregersen P. K., Obata F., Goldberg D., Maccari J., Alber C., Silver J. Analysis of DR beta and DQ beta chain cDNA clones from a DR7 haplotype. J Immunol. 1986 Nov 1;137(9):2886–2890. [PubMed] [Google Scholar]
  21. Karr R. W., Yu W., Watts R., Evans K. S., Celis E. The role of polymorphic HLA-DR beta chain residues in presentation of viral antigens to T cells. J Exp Med. 1990 Jul 1;172(1):273–283. doi: 10.1084/jem.172.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klohe E. P., Watts R., Bahl M., Alber C., Yu W. Y., Anderson R., Silver J., Gregersen P. K., Karr R. W. Analysis of the molecular specificities of anti-class II monoclonal antibodies by using L cell transfectants expressing HLA class II molecules. J Immunol. 1988 Sep 15;141(6):2158–2164. [PubMed] [Google Scholar]
  23. Klohe E., Fu X. T., Ballas M., Karr R. W. HLA-DR beta chain residues that are predicted to be located in the floor of the peptide-binding groove contribute to antibody-binding epitopes. Hum Immunol. 1993 May;37(1):51–58. doi: 10.1016/0198-8859(93)90142-n. [DOI] [PubMed] [Google Scholar]
  24. Krieger J. I., Karr R. W., Grey H. M., Yu W. Y., O'Sullivan D., Batovsky L., Zheng Z. L., Colón S. M., Gaeta F. C., Sidney J. Single amino acid changes in DR and antigen define residues critical for peptide-MHC binding and T cell recognition. J Immunol. 1991 Apr 1;146(7):2331–2340. [PubMed] [Google Scholar]
  25. Lampson L. A., Levy R. Two populations of Ia-like molecules on a human B cell line. J Immunol. 1980 Jul;125(1):293–299. [PubMed] [Google Scholar]
  26. Lee J. M., McKean D. J., Watts T. H. Functional mapping of MHC class II polymorphic residues. The alpha-chain controls the specificity for binding an Ad-versus an A k-restricted peptide and the beta-chain region 65-67 controls T cell recognition but not peptide binding. J Immunol. 1991 May 1;146(9):2952–2959. [PubMed] [Google Scholar]
  27. Marshall K. W., Liu A. F., Canales J., Perahia B., Jorgensen B., Gantzos R. D., Aguilar B., Devaux B., Rothbard J. B. Role of the polymorphic residues in HLA-DR molecules in allele-specific binding of peptide ligands. J Immunol. 1994 May 15;152(10):4946–4957. [PubMed] [Google Scholar]
  28. Maurer D., Gorski J. Transfer of polymorphic monoclonal antibody epitopes to the first and second domains of HLA-DR beta-chains by site-directed mutagenesis. J Immunol. 1991 Jan 15;146(2):621–626. [PubMed] [Google Scholar]
  29. Newton-Nash D. K., Eckels D. D. Differential effect of polymorphism at HLA-DR1 beta-chain positions 85 and 86 on binding and recognition of DR1-restricted antigenic peptides. J Immunol. 1993 Mar 1;150(5):1813–1821. [PubMed] [Google Scholar]
  30. O'Sullivan D., Arrhenius T., Sidney J., Del Guercio M. F., Albertson M., Wall M., Oseroff C., Southwood S., Colón S. M., Gaeta F. C. On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. J Immunol. 1991 Oct 15;147(8):2663–2669. [PubMed] [Google Scholar]
  31. Okayama H., Berg P. A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol Cell Biol. 1983 Feb;3(2):280–289. doi: 10.1128/mcb.3.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Olson R. R., De Magistris M. T., Di Tommaso A., Karr R. W. Mutations in the third, but not the first or second, hypervariable regions of DR(beta 1*0101) eliminate DR1-restricted recognition of a pertussis toxin peptide. J Immunol. 1992 May 1;148(9):2703–2708. [PubMed] [Google Scholar]
  33. Panina-Bordignon P., Fu X. T., Lanzavecchia A., Karr R. W. Identification of HLA-DR alpha chain residues critical for binding of the toxic shock syndrome toxin superantigen. J Exp Med. 1992 Dec 1;176(6):1779–1784. doi: 10.1084/jem.176.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Racioppi L., Ronchese F., Schwartz R. H., Germain R. N. The molecular basis of class II MHC allelic control of T cell responses. J Immunol. 1991 Dec 1;147(11):3718–3727. [PubMed] [Google Scholar]
  35. Radka S. F., Amos D. B., Quackenbush L. J., Cresswell P. HLA-DR7-specific monoclonal antibodies and a chimpanzee anti-DR7 serum detect different epitopes on the same molecule. Immunogenetics. 1984;19(1):63–76. doi: 10.1007/BF00364476. [DOI] [PubMed] [Google Scholar]
  36. Ronchese F., Brown M. A., Germain R. N. Structure-function analysis of the Abm12 beta mutation using site-directed mutagenesis and DNA-mediated gene transfer. J Immunol. 1987 Jul 15;139(2):629–638. [PubMed] [Google Scholar]
  37. Rosloniec E. F., Beard K. S., Freed J. H. Functional analysis of the antigen binding region of an MHC class II molecule. Mol Immunol. 1993 Apr;30(5):491–501. doi: 10.1016/0161-5890(93)90117-t. [DOI] [PubMed] [Google Scholar]
  38. Rosloniec E. F., Vitez L. J., Beck B. N., Buerstedde J. M., McKean D. J., Landais D., Benoist C., Mathis D., Freed J. H. I-Ak polymorphisms define a functionally dominant region for the presentation of hen egg lysozyme peptides. J Immunol. 1989 Jul 1;143(1):50–58. [PubMed] [Google Scholar]
  39. Sette A., Buus S., Appella E., Smith J. A., Chesnut R., Miles C., Colon S. M., Grey H. M. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci U S A. 1989 May;86(9):3296–3300. doi: 10.1073/pnas.86.9.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sette A., Buus S., Colon S., Smith J. A., Miles C., Grey H. M. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells. 1987 Jul 30-Aug 5Nature. 328(6129):395–399. doi: 10.1038/328395a0. [DOI] [PubMed] [Google Scholar]
  41. Sette A., Sidney J., Oseroff C., del Guercio M. F., Southwood S., Arrhenius T., Powell M. F., Colón S. M., Gaeta F. C., Grey H. M. HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. J Immunol. 1993 Sep 15;151(6):3163–3170. [PubMed] [Google Scholar]
  42. Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med. 1978 Apr 20;298(16):869–871. doi: 10.1056/NEJM197804202981602. [DOI] [PubMed] [Google Scholar]
  43. Stern L. J., Brown J. H., Jardetzky T. S., Gorga J. C., Urban R. G., Strominger J. L., Wiley D. C. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature. 1994 Mar 17;368(6468):215–221. doi: 10.1038/368215a0. [DOI] [PubMed] [Google Scholar]
  44. Summers N. L., Karplus M. Modeling of side chains, loops, and insertions in proteins. Methods Enzymol. 1991;202:156–204. doi: 10.1016/0076-6879(91)02011-w. [DOI] [PubMed] [Google Scholar]
  45. Tonnelle C., DeMars R., Long E. O. DO beta: a new beta chain gene in HLA-D with a distinct regulation of expression. EMBO J. 1985 Nov;4(11):2839–2847. doi: 10.1002/j.1460-2075.1985.tb04012.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weyand C. M., Hicok K. C., Conn D. L., Goronzy J. J. The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann Intern Med. 1992 Nov 15;117(10):801–806. doi: 10.7326/0003-4819-117-10-801. [DOI] [PubMed] [Google Scholar]
  47. Weyand C. M., Xie C., Goronzy J. J. Homozygosity for the HLA-DRB1 allele selects for extraarticular manifestations in rheumatoid arthritis. J Clin Invest. 1992 Jun;89(6):2033–2039. doi: 10.1172/JCI115814. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES