Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Mar 1;181(3):1101–1110. doi: 10.1084/jem.181.3.1101

Ligation of CD38 suppresses human B lymphopoiesis

PMCID: PMC2191914  PMID: 7869031

Abstract

CD38 is a transmembrane glycoprotein expressed in many cell types, including lymphoid progenitors and activated lymphocytes. High levels of CD38 expression on immature lymphoid cells suggest its role in the regulation of cell growth and differentiation, but there is no evidence demonstrating a functional activity of CD38 on these cells. We used stroma-supported cultures of B cell progenitors and anti-CD38 monoclonal antibodies (T16 and IB4) to study CD38 function. In cultures of normal bone marrow CD19+ cells (n = 5), addition of anti-CD38 markedly reduced the number of cells recovered after 7 d. Cell loss was greatest among CD19+ sIg- B cell progenitors (mean cell recovery +/- SD = 7.2 +/- 11.7% of recovery in control cultures) and extended to CD19+CD34+ B cells (the most immature subset; 7.6 +/- 2.2%). In contrast, CD38 ligation did not substantially affect cell numbers in cultures of normal peripheral blood or tonsillar B cells. In stroma- supported cultures of 22 B-lineage acute lymphoblastic leukemia cases, anti-CD38 suppressed recovery of CD19+ sIg- leukemic cells. CD38 ligation also suppressed the growth of immature lymphoid cell lines cultured on stroma and, in some cases, in the presence of stroma- derived cytokines (interleukin [IL] 7, IL-3, and/or stem cell factor), but did not inhibit growth in stroma- or cytokine-free cultures. DNA content and DNA fragmentation studies showed that CD38 ligation of stroma-supported cells resulted in both inhibition of DNA synthesis and induction of apoptosis. It is known that CD38 catalyzes nicotinamide adenine dinucleotide (NAD+) hydrolysis into cyclic ADP-ribose (cADPR) and ADPR. However, no changes in NAD+ hydrolysis or cADPR and ADPR production after CD38 ligation were found by high-performance liquid chromatography; addition of NAD+, ADPR, or cADPR to cultures of lymphoid progenitors did not offset the inhibitory effects of anti- CD38. Thus, anti-CD38 does not suppress B lymphopoiesis by altering the enzymatic function of the molecule. In conclusion, these data show that CD38 ligation inhibits the growth of immature B lymphoid cells in the bone marrow microenvironment, and suggest that CD38 interaction with a putative ligand represents a novel regulatory mechanism of B lymphopoiesis.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessio M., Roggero S., Funaro A., De Monte L. B., Peruzzi L., Geuna M., Malavasi F. CD38 molecule: structural and biochemical analysis on human T lymphocytes, thymocytes, and plasma cells. J Immunol. 1990 Aug 1;145(3):878–884. [PubMed] [Google Scholar]
  2. Campana D., Coustan-Smith E., Manabe A., Buschle M., Raimondi S. C., Behm F. G., Ashmun R., Aricò M., Biondi A., Pui C. H. Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood. 1993 Feb 15;81(4):1025–1031. [PubMed] [Google Scholar]
  3. Campana D., Manabe A., Evans W. E. Stroma-supported immunocytometric assay (SIA): a novel method for testing the sensitivity of acute lymphoblastic leukemia cells to cytotoxic drugs. Leukemia. 1993 Mar;7(3):482–488. [PubMed] [Google Scholar]
  4. Dianzani U., Funaro A., DiFranco D., Garbarino G., Bragardo M., Redoglia V., Buonfiglio D., De Monte L. B., Pileri A., Malavasi F. Interaction between endothelium and CD4+CD45RA+ lymphocytes. Role of the human CD38 molecule. J Immunol. 1994 Aug 1;153(3):952–959. [PubMed] [Google Scholar]
  5. Funaro A., De Monte L. B., Dianzani U., Forni M., Malavasi F. Human CD38 is associated to distinct molecules which mediate transmembrane signaling in different lineages. Eur J Immunol. 1993 Oct;23(10):2407–2411. doi: 10.1002/eji.1830231005. [DOI] [PubMed] [Google Scholar]
  6. Funaro A., Spagnoli G. C., Ausiello C. M., Alessio M., Roggero S., Delia D., Zaccolo M., Malavasi F. Involvement of the multilineage CD38 molecule in a unique pathway of cell activation and proliferation. J Immunol. 1990 Oct 15;145(8):2390–2396. [PubMed] [Google Scholar]
  7. Galione A. Cyclic ADP-ribose: a new way to control calcium. Science. 1993 Jan 15;259(5093):325–326. doi: 10.1126/science.8380506. [DOI] [PubMed] [Google Scholar]
  8. Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
  9. Gelman L., Deterre P., Gouy H., Boumsell L., Debré P., Bismuth G. The lymphocyte surface antigen CD38 acts as a nicotinamide adenine dinucleotide glycohydrolase in human T lymphocytes. Eur J Immunol. 1993 Dec;23(12):3361–3364. doi: 10.1002/eji.1830231245. [DOI] [PubMed] [Google Scholar]
  10. Gold R., Schmied M., Rothe G., Zischler H., Breitschopf H., Wekerle H., Lassmann H. Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem. 1993 Jul;41(7):1023–1030. doi: 10.1177/41.7.8515045. [DOI] [PubMed] [Google Scholar]
  11. Harada N., Santos-Argumedo L., Chang R., Grimaldi J. C., Lund F. E., Brannan C. I., Copeland N. G., Jenkins N. A., Heath A. W., Parkhouse R. M. Expression cloning of a cDNA encoding a novel murine B cell activation marker. Homology to human CD38. J Immunol. 1993 Sep 15;151(6):3111–3118. [PubMed] [Google Scholar]
  12. Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
  13. Jackson D. G., Bell J. I. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J Immunol. 1990 Apr 1;144(7):2811–2815. [PubMed] [Google Scholar]
  14. Janossy G., Tidman N., Papageorgiou E. S., Kung P. C., Goldstein G. Distribution of t lymphocyte subsets in the human bone marrow and thymus: an analysis with monoclonal antibodies. J Immunol. 1981 Apr;126(4):1608–1613. [PubMed] [Google Scholar]
  15. Kincade P. W., Lee G., Pietrangeli C. E., Hayashi S., Gimble J. M. Cells and molecules that regulate B lymphopoiesis in bone marrow. Annu Rev Immunol. 1989;7:111–143. doi: 10.1146/annurev.iy.07.040189.000551. [DOI] [PubMed] [Google Scholar]
  16. Kontani K., Nishina H., Ohoka Y., Takahashi K., Katada T. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38. J Biol Chem. 1993 Aug 15;268(23):16895–16898. [PubMed] [Google Scholar]
  17. Kumagai M., Manabe A., Coustan-Smith E., Blakley R. L., Beck W. T., Santana V. M., Behm F. G., Raimondi S. C., Campana D. Use of stroma-supported cultures of leukemic cells to assess antileukemic drugs. II. Potent cytotoxicity of 2-chloro-deoxyadenosine in acute lymphoblastic leukemia. Leukemia. 1994 Jul;8(7):1116–1123. [PubMed] [Google Scholar]
  18. Lee H. C., Walseth T. F., Bratt G. T., Hayes R. N., Clapper D. L. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jan 25;264(3):1608–1615. [PubMed] [Google Scholar]
  19. MacLennan I. C. Germinal centers. Annu Rev Immunol. 1994;12:117–139. doi: 10.1146/annurev.iy.12.040194.001001. [DOI] [PubMed] [Google Scholar]
  20. Malavasi F., Caligaris-Cappio F., Milanese C., Dellabona P., Richiardi P., Carbonara A. O. Characterization of a murine monoclonal antibody specific for human early lymphohemopoietic cells. Hum Immunol. 1984 Jan;9(1):9–20. doi: 10.1016/0198-8859(84)90003-x. [DOI] [PubMed] [Google Scholar]
  21. Malavasi F., Funaro A., Roggero S., Horenstein A., Calosso L., Mehta K. Human CD38: a glycoprotein in search of a function. Immunol Today. 1994 Mar;15(3):95–97. doi: 10.1016/0167-5699(94)90148-1. [DOI] [PubMed] [Google Scholar]
  22. Manabe A., Coustan-Smith E., Behm F. G., Raimondi S. C., Campana D. Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood. 1992 May 1;79(9):2370–2377. [PubMed] [Google Scholar]
  23. Manabe A., Coustan-Smith E., Kumagai M., Behm F. G., Raimondi S. C., Pui C. H., Campana D. Interleukin-4 induces programmed cell death (apoptosis) in cases of high-risk acute lymphoblastic leukemia. Blood. 1994 Apr 1;83(7):1731–1737. [PubMed] [Google Scholar]
  24. Manabe A., Murti K. G., Coustan-Smith E., Kumagai M., Behm F. G., Raimondi S. C., Campana D. Adhesion-dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells. Blood. 1994 Feb 1;83(3):758–766. [PubMed] [Google Scholar]
  25. Mészáros L. G., Bak J., Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993 Jul 1;364(6432):76–79. doi: 10.1038/364076a0. [DOI] [PubMed] [Google Scholar]
  26. Reinherz E. L., Kung P. C., Goldstein G., Levey R. H., Schlossman S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1588–1592. doi: 10.1073/pnas.77.3.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rolink A., Melchers F. Molecular and cellular origins of B lymphocyte diversity. Cell. 1991 Sep 20;66(6):1081–1094. doi: 10.1016/0092-8674(91)90032-t. [DOI] [PubMed] [Google Scholar]
  28. Ryan D. H., Nuccie B. L., Abboud C. N. Inhibition of human bone marrow lymphoid progenitor colonies by antibodies to VLA integrins. J Immunol. 1992 Dec 1;149(11):3759–3764. [PubMed] [Google Scholar]
  29. Santos-Argumedo L., Teixeira C., Preece G., Kirkham P. A., Parkhouse R. M. A B lymphocyte surface molecule mediating activation and protection from apoptosis via calcium channels. J Immunol. 1993 Sep 15;151(6):3119–3130. [PubMed] [Google Scholar]
  30. Sieff C., Bicknell D., Caine G., Robinson J., Lam G., Greaves M. F. Changes in cell surface antigen expression during hemopoietic differentiation. Blood. 1982 Sep;60(3):703–713. [PubMed] [Google Scholar]
  31. States D. J., Walseth T. F., Lee H. C. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem Sci. 1992 Dec;17(12):495–495. doi: 10.1016/0968-0004(92)90337-9. [DOI] [PubMed] [Google Scholar]
  32. Summerhill R. J., Jackson D. G., Galione A. Human lymphocyte antigen CD38 catalyzes the production of cyclic ADP-ribose. FEBS Lett. 1993 Dec 6;335(2):231–233. doi: 10.1016/0014-5793(93)80735-d. [DOI] [PubMed] [Google Scholar]
  33. Takasawa S., Nata K., Yonekura H., Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science. 1993 Jan 15;259(5093):370–373. doi: 10.1126/science.8420005. [DOI] [PubMed] [Google Scholar]
  34. Takasawa S., Tohgo A., Noguchi N., Koguma T., Nata K., Sugimoto T., Yonekura H., Okamoto H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem. 1993 Dec 15;268(35):26052–26054. [PubMed] [Google Scholar]
  35. Terhorst C., van Agthoven A., LeClair K., Snow P., Reinherz E., Schlossman S. Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10. Cell. 1981 Mar;23(3):771–780. doi: 10.1016/0092-8674(81)90441-4. [DOI] [PubMed] [Google Scholar]
  36. White A. M., Watson S. P., Galione A. Cyclic ADP-ribose-induced Ca2+ release from rat brain microsomes. FEBS Lett. 1993 Mar 8;318(3):259–263. doi: 10.1016/0014-5793(93)80524-x. [DOI] [PubMed] [Google Scholar]
  37. Wolf M. L., Buckley J. A., Goldfarb A., Law C. L., LeBien T. W. Development of a bone marrow culture for maintenance and growth of normal human B cell precursors. J Immunol. 1991 Nov 15;147(10):3324–3330. [PubMed] [Google Scholar]
  38. Zocchi E., Franco L., Guida L., Benatti U., Bargellesi A., Malavasi F., Lee H. C., De Flora A. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1459–1465. doi: 10.1006/bbrc.1993.2416. [DOI] [PubMed] [Google Scholar]
  39. Zupo S., Rugari E., Dono M., Taborelli G., Malavasi F., Ferrarini M. CD38 signaling by agonistic monoclonal antibody prevents apoptosis of human germinal center B cells. Eur J Immunol. 1994 May;24(5):1218–1222. doi: 10.1002/eji.1830240532. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES