Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Mar 1;181(3):877–887. doi: 10.1084/jem.181.3.877

Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells

PMCID: PMC2191916  PMID: 7869048

Abstract

Thymic epithelial cells play a crucial role in the selection of developing thymocytes. Thymocyte-epithelial cell interactions involve a number of adhesion molecules, including members of the integrin and immunoglobulin superfamilies. We found that human thymic epithelial cells synthesize an endogenous lectin, galectin-1, which binds to oligosaccharide ligands on the surface of thymocytes and T lymphoblastoid cells. Binding of T lymphoblastoid cells to thymic epithelial cells was inhibited by antibody to galectin-1 on the epithelial cells, and by two antibodies, T305 and 2B11, that recognize carbohydrate epitopes on the T cell surface glycoproteins CD43 and CD45, respectively. T lymphoblastoid cells and thymocytes bound recombinant galectin-1, as demonstrated by flow cytometric analysis, and lectin binding was completely inhibited in the presence of lactose. The degree of galectin-1 binding to thymocytes correlated with the maturation stage of the cells, as immature thymocytes bound more galectin-1 than did mature thymocytes. Preferential binding of galectin- 1 to immature thymocytes may result from regulated expression of preferred oligosaccharide ligands on those cells, since we found that the epitope recognized by the T305 antibody, the core 2 O-glycan structure on CD43, was expressed on cortical, but not medullary cells. The level of expression of the UDP-GlcNAc:Gal beta 1,3GalNAc-R beta 1, 6GlcNAc transferase (core 2 beta 1, 6 GlcNAc transferase, or C2GnT), which creates the core 2 O-glycan structure, correlated with the glycosylation change between cortical and medullary cells. Expression of mRNA encoding the C2GnT was high in subcapsular and cortical thymocytes and low in medullary thymocytes, as demonstrated by in situ hybridization. These results suggest that galectin-1 participates in thymocyte-thymic epithelial cell interactions, and that this interaction may be regulated by expression of relevant oligosaccharide ligands on the thymocyte cell surface.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachar-Lustig E., Gan Y., Reisner Y. Purification in large amounts of beta-D-galactoside-binding lectins from a murine thymic epithelial cell line. Carbohydr Res. 1991 Jun 25;213:345–352. doi: 10.1016/s0008-6215(00)90622-0. [DOI] [PubMed] [Google Scholar]
  2. Barondes S. H., Castronovo V., Cooper D. N., Cummings R. D., Drickamer K., Feizi T., Gitt M. A., Hirabayashi J., Hughes C., Kasai K. Galectins: a family of animal beta-galactoside-binding lectins. Cell. 1994 Feb 25;76(4):597–598. doi: 10.1016/0092-8674(94)90498-7. [DOI] [PubMed] [Google Scholar]
  3. Barondes S. H., Cooper D. N., Gitt M. A., Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994 Aug 19;269(33):20807–20810. [PubMed] [Google Scholar]
  4. Bazil V., Strominger J. L. CD43, the major sialoglycoprotein of human leukocytes, is proteolytically cleaved from the surface of stimulated lymphocytes and granulocytes. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3792–3796. doi: 10.1073/pnas.90.9.3792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bierhuizen M. F., Fukuda M. Expression cloning of a cDNA encoding UDP-GlcNAc:Gal beta 1-3-GalNAc-R (GlcNAc to GalNAc) beta 1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9326–9330. doi: 10.1073/pnas.89.19.9326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carding S. R., Thorpe S. J., Thorpe R., Feizi T. Transformation and growth related changes in levels of nuclear and cytoplasmic proteins antigenically related to mammalian beta-galactoside-binding lectin. Biochem Biophys Res Commun. 1985 Mar 15;127(2):680–686. doi: 10.1016/s0006-291x(85)80215-1. [DOI] [PubMed] [Google Scholar]
  7. Childs R. A., Dalchau R., Scudder P., Hounsell E. F., Fabre J. W., Feizi T. Evidence for the occurrence of O-glycosidically linked oligosaccharides of poly-N-acetyllactosamine type on the human leucocyte common antigen. Biochem Biophys Res Commun. 1983 Jan 27;110(2):424–431. doi: 10.1016/0006-291x(83)91166-x. [DOI] [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Cooper D. N., Massa S. M., Barondes S. H. Endogenous muscle lectin inhibits myoblast adhesion to laminin. J Cell Biol. 1991 Dec;115(5):1437–1448. doi: 10.1083/jcb.115.5.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Couraud P. O., Casentini-Borocz D., Bringman T. S., Griffith J., McGrogan M., Nedwin G. E. Molecular cloning, characterization, and expression of a human 14-kDa lectin. J Biol Chem. 1989 Jan 15;264(2):1310–1316. [PubMed] [Google Scholar]
  11. Dalloul A. H., Fourcade C., Debré P., Mossalayi M. D. Thymic epithelial cell-derived supernatants sustain the maturation of human prothymocytes: involvement of interleukin 1 and CD23. Eur J Immunol. 1991 Oct;21(10):2633–2636. doi: 10.1002/eji.1830211050. [DOI] [PubMed] [Google Scholar]
  12. De Maio A., Lis H., Gershoni J. M., Sharon N. Identification of glycoproteins that are receptors for peanut agglutinin on immature (cortical) mouse thymocytes. FEBS Lett. 1986 Jan 1;194(1):28–32. doi: 10.1016/0014-5793(86)80045-x. [DOI] [PubMed] [Google Scholar]
  13. Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem. 1988 Jul 15;263(20):9557–9560. [PubMed] [Google Scholar]
  14. Fox R. I., Hueniken M., Fong S., Behar S., Royston I., Singhal S. K., Thompson L. A novel cell surface antigen (T305) found in increased frequency on acute leukemia cells and in autoimmune disease states. J Immunol. 1983 Aug;131(2):762–767. [PubMed] [Google Scholar]
  15. Galy A. H., Spits H. CD40 is functionally expressed on human thymic epithelial cells. J Immunol. 1992 Aug 1;149(3):775–782. [PubMed] [Google Scholar]
  16. Gillespie W., Paulson J. C., Kelm S., Pang M., Baum L. G. Regulation of alpha 2,3-sialyltransferase expression correlates with conversion of peanut agglutinin (PNA)+ to PNA- phenotype in developing thymocytes. J Biol Chem. 1993 Feb 25;268(6):3801–3804. [PubMed] [Google Scholar]
  17. Giunta M., Favre A., Ramarli D., Grossi C. E., Corte G. A novel integrin involved in thymocyte-thymic epithelial cell interactions. J Exp Med. 1991 Jun 1;173(6):1537–1548. doi: 10.1084/jem.173.6.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirabayashi J., Kasai K. The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology. 1993 Aug;3(4):297–304. doi: 10.1093/glycob/3.4.297. [DOI] [PubMed] [Google Scholar]
  19. King P. D., Batchelor A. H., Lawlor P., Katz D. R. The role of CD44, CD45, CD45RO, CD46 and CD55 as potential anti-adhesion molecules involved in the binding of human tonsillar T cells to phorbol 12-myristate 13-acetate-differentiated U-937 cells. Eur J Immunol. 1990 Feb;20(2):363–368. doi: 10.1002/eji.1830200220. [DOI] [PubMed] [Google Scholar]
  20. Lefrancois L. Expression of carbohydrate differentiation antigens during ontogeny of the murine thymus. J Immunol. 1987 Oct 1;139(7):2220–2229. [PubMed] [Google Scholar]
  21. Levi G., Tarrab-Hazdai R., Teichberg V. I. Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits. Eur J Immunol. 1983 Jun;13(6):500–507. doi: 10.1002/eji.1830130613. [DOI] [PubMed] [Google Scholar]
  22. Levi G., Teichberg V. I. Isolation and characterization of chicken thymic electrolectin. Biochem J. 1985 Mar 1;226(2):379–384. doi: 10.1042/bj2260379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levi G., Teichberg V. I. Selective interactions of electrolectins from eel electric organ and mouse thymus with mouse immature thymocytes. Immunol Lett. 1983;7(1):35–39. doi: 10.1016/0165-2478(83)90052-4. [DOI] [PubMed] [Google Scholar]
  24. Liao D. I., Kapadia G., Ahmed H., Vasta G. R., Herzberg O. Structure of S-lectin, a developmentally regulated vertebrate beta-galactoside-binding protein. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1428–1432. doi: 10.1073/pnas.91.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maemura K., Fukuda M. Poly-N-acetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Le(x) structures in O-glycans. J Biol Chem. 1992 Dec 5;267(34):24379–24386. [PubMed] [Google Scholar]
  26. Manjunath N., Johnson R. S., Staunton D. E., Pasqualini R., Ardman B. Targeted disruption of CD43 gene enhances T lymphocyte adhesion. J Immunol. 1993 Aug 1;151(3):1528–1534. [PubMed] [Google Scholar]
  27. Nossal G. J. Negative selection of lymphocytes. Cell. 1994 Jan 28;76(2):229–239. doi: 10.1016/0092-8674(94)90331-x. [DOI] [PubMed] [Google Scholar]
  28. Offner H., Celnik B., Bringman T. S., Casentini-Borocz D., Nedwin G. E., Vandenbark A. A. Recombinant human beta-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J Neuroimmunol. 1990 Jul;28(2):177–184. doi: 10.1016/0165-5728(90)90032-i. [DOI] [PubMed] [Google Scholar]
  29. Patel D. D., Haynes B. F. Cell adhesion molecules involved in intrathymic T cell development. Semin Immunol. 1993 Aug;5(4):282–292. doi: 10.1006/smim.1993.1032. [DOI] [PubMed] [Google Scholar]
  30. Pink J. R. Changes in T-lymphocyte glycoprotein structures associated with differentiation. Contemp Top Mol Immunol. 1983;9:89–113. doi: 10.1007/978-1-4684-4517-6_3. [DOI] [PubMed] [Google Scholar]
  31. Poirier F., Robertson E. J. Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. Development. 1993 Dec;119(4):1229–1236. doi: 10.1242/dev.119.4.1229. [DOI] [PubMed] [Google Scholar]
  32. Powell L. D., Varki A. The oligosaccharide binding specificities of CD22 beta, a sialic acid-specific lectin of B cells. J Biol Chem. 1994 Apr 8;269(14):10628–10636. [PubMed] [Google Scholar]
  33. Raz A., Meromsky L., Zvibel I., Lotan R. Transformation-related changes in the expression of endogenous cell lectins. Int J Cancer. 1987 Mar 15;39(3):353–360. doi: 10.1002/ijc.2910390314. [DOI] [PubMed] [Google Scholar]
  34. Rosenstein Y., Park J. K., Hahn W. C., Rosen F. S., Bierer B. E., Burakoff S. J. CD43, a molecule defective in Wiskott-Aldrich syndrome, binds ICAM-1. Nature. 1991 Nov 21;354(6350):233–235. doi: 10.1038/354233a0. [DOI] [PubMed] [Google Scholar]
  35. Salomon D. R., Mojcik C. F., Chang A. C., Wadsworth S., Adams D. H., Coligan J. E., Shevach E. M. Constitutive activation of integrin alpha 4 beta 1 defines a unique stage of human thymocyte development. J Exp Med. 1994 May 1;179(5):1573–1584. doi: 10.1084/jem.179.5.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sanford G. L., Harris-Hooker S. Stimulation of vascular cell proliferation by beta-galactoside specific lectins. FASEB J. 1990 Aug;4(11):2912–2918. doi: 10.1096/fasebj.4.11.2379767. [DOI] [PubMed] [Google Scholar]
  37. Schmid I., Schmid P., Giorgi J. V. Conversion of logarithmic channel numbers into relative linear fluorescence intensity. Cytometry. 1988 Nov;9(6):533–538. doi: 10.1002/cyto.990090605. [DOI] [PubMed] [Google Scholar]
  38. Sgroi D., Stamenkovic I. The B-cell adhesion molecule CD22 is cross-species reactive and recognizes distinct sialoglycoproteins on different functional T-cell sub-populations. Scand J Immunol. 1994 May;39(5):433–438. doi: 10.1111/j.1365-3083.1994.tb03397.x. [DOI] [PubMed] [Google Scholar]
  39. Singer K. H., Denning S. M., Whichard L. P., Haynes B. F. Thymocyte LFA-1 and thymic epithelial cell ICAM-1 molecules mediate binding of activated human thymocytes to thymic epithelial cells. J Immunol. 1990 Apr 15;144(8):2931–2939. [PubMed] [Google Scholar]
  40. Singer K. H., Haynes B. F. Epithelial-thymocyte interactions in human thymus. Hum Immunol. 1987 Oct;20(2):127–144. doi: 10.1016/0198-8859(87)90027-9. [DOI] [PubMed] [Google Scholar]
  41. Singer K. H., Wolf L. S., Lobach D. F., Denning S. M., Tuck D. T., Robertson A. L., Haynes B. F. Human thymocytes bind to autologous and allogeneic thymic epithelial cells in vitro. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6588–6592. doi: 10.1073/pnas.83.17.6588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Skrincosky D. M., Allen H. J., Bernacki R. J. Galaptin-mediated adhesion of human ovarian carcinoma A121 cells and detection of cellular galaptin-binding glycoproteins. Cancer Res. 1993 Jun 1;53(11):2667–2675. [PubMed] [Google Scholar]
  43. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  44. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  45. Sutherland D. R., Abdullah K. M., Cyopick P., Mellors A. Cleavage of the cell-surface O-sialoglycoproteins CD34, CD43, CD44, and CD45 by a novel glycoprotease from Pasteurella haemolytica. J Immunol. 1992 Mar 1;148(5):1458–1464. [PubMed] [Google Scholar]
  46. Uittenbogaart C. H., Higashitani S., Schmid I., Vollger L. W., Boone T., Clement L. T. Interleukin-4 induces expression of the CD45RA antigen on human thymocyte subpopulations. Int Immunol. 1990;2(12):1179–1187. doi: 10.1093/intimm/2.12.1179. [DOI] [PubMed] [Google Scholar]
  47. Warnke R. A., Gatter K. C., Falini B., Hildreth P., Woolston R. E., Pulford K., Cordell J. L., Cohen B., De Wolf-Peeters C., Mason D. Y. Diagnosis of human lymphoma with monoclonal antileukocyte antibodies. N Engl J Med. 1983 Nov 24;309(21):1275–1281. doi: 10.1056/NEJM198311243092102. [DOI] [PubMed] [Google Scholar]
  48. Wells V., Mallucci L. Identification of an autocrine negative growth factor: mouse beta-galactoside-binding protein is a cytostatic factor and cell growth regulator. Cell. 1991 Jan 11;64(1):91–97. doi: 10.1016/0092-8674(91)90211-g. [DOI] [PubMed] [Google Scholar]
  49. Whiteheart S. W., McLenithan J. C., Hart G. W. Surfaces of murine lymphocyte subsets differ in sialylation states and antigen distribution of a major N-linked penultimate saccharide structure. Cell Immunol. 1990 Feb;125(2):337–353. doi: 10.1016/0008-8749(90)90089-a. [DOI] [PubMed] [Google Scholar]
  50. Zhou Q., Cummings R. D. L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch Biochem Biophys. 1993 Jan;300(1):6–17. doi: 10.1006/abbi.1993.1002. [DOI] [PubMed] [Google Scholar]
  51. von Boehmer H. Positive selection of lymphocytes. Cell. 1994 Jan 28;76(2):219–228. doi: 10.1016/0092-8674(94)90330-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES