Abstract
The capsular polysaccharide is the major virulence factor of Streptococcus pneumoniae. Previously, we identified and cloned a region from the S. pneumoniae chromosome specific for the production of type 3 capsular polysaccharide. Now, by sequencing the region and characterizing mutations genetically and in an in vitro capsule synthesis assay, we have assigned putative functions to the products of the type-specific genes. Using DNA from the right end of the region in mapping studies, we have obtained further evidence indicating that the capsule genes of each serotype are contained in a gene cassette located adjacent to this region. We have cloned the region flanking the left end of the cassette from the type 3 chromosome and have found that it is repeated in the S. pneumoniae chromosome. The DNA sequence and hybridization data suggest a model for recombination of the capsule gene cassettes that not only describes the replacement of capsule genes, but also suggests an explanation for binary capsule type formation, and the creation of novel capsule types.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUSTRIAN R., BERNHEIMER H. P., SMITH E. E., MILLS G. T. Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical bases of binary capsulation. J Exp Med. 1959 Oct 1;110:585–602. doi: 10.1084/jem.110.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkinson E. M., Long S. R. Homology of Rhizobium meliloti NodC to polysaccharide polymerizing enzymes. Mol Plant Microbe Interact. 1992 Sep-Oct;5(5):439–442. doi: 10.1094/mpmi-5-439. [DOI] [PubMed] [Google Scholar]
- BERNHEIMER A. W. Synthesis of type III pneumococcal polysaccharide by suspensions of resting cells. J Exp Med. 1953 May;97(5):591–600. doi: 10.1084/jem.97.5.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bastin D. A., Stevenson G., Brown P. K., Haase A., Reeves P. R. Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol. 1993 Mar;7(5):725–734. doi: 10.1111/j.1365-2958.1993.tb01163.x. [DOI] [PubMed] [Google Scholar]
- Bernheimer H. P., Wermundsen I. E., Austrian R. Mutation in pneumococcus type 3 affecting multiple cistrons concerned with the synthesis of capsular polysaccharide. J Bacteriol. 1968 Oct;96(4):1099–1102. doi: 10.1128/jb.96.4.1099-1102.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernheimer H. P., Wermundsen I. E., Austrian R. Qualitative differences in the behavior of pneumoncoccal deoxyribonucleic acids transforming to the same capsular type. J Bacteriol. 1967 Jan;93(1):320–333. doi: 10.1128/jb.93.1.320-333.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernheimer H. P., Wermundsen I. E. Homology in capsular transformation reactions in Pneumococcus. Mol Gen Genet. 1972;116(1):68–83. doi: 10.1007/BF00334261. [DOI] [PubMed] [Google Scholar]
- Bernheimer H. P., Wermundsen I. E. Unstable binary capsulated transformants in pneumococcus. J Bacteriol. 1969 Jun;98(3):1073–1079. doi: 10.1128/jb.98.3.1073-1079.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briles D. E., Claflin J. L., Schroer K., Forman C. Mouse Igg3 antibodies are highly protective against infection with Streptococcus pneumoniae. Nature. 1981 Nov 5;294(5836):88–90. doi: 10.1038/294088a0. [DOI] [PubMed] [Google Scholar]
- Briles D. E., Crain M. J., Gray B. M., Forman C., Yother J. Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect Immun. 1992 Jan;60(1):111–116. doi: 10.1128/iai.60.1.111-116.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briles D. E., Nahm M., Schroer K., Davie J., Baker P., Kearney J., Barletta R. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 streptococcus pneumoniae. J Exp Med. 1981 Mar 1;153(3):694–705. doi: 10.1084/jem.153.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brosius J., Holy A. Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6929–6933. doi: 10.1073/pnas.81.22.6929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coffey T. J., Dowson C. G., Daniels M., Zhou J., Martin C., Spratt B. G., Musser J. M. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol Microbiol. 1991 Sep;5(9):2255–2260. doi: 10.1111/j.1365-2958.1991.tb02155.x. [DOI] [PubMed] [Google Scholar]
- Crain M. J., Waltman W. D., 2nd, Turner J. S., Yother J., Talkington D. F., McDaniel L. S., Gray B. M., Briles D. E. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect Immun. 1990 Oct;58(10):3293–3299. doi: 10.1128/iai.58.10.3293-3299.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson M. H. THE TRANSFORMATION OF PNEUMOCOCCAL TYPES : II. THE INTERCONVERTIBILITY OF TYPE-SPECIFIC S PNEUMOCOCCI. J Exp Med. 1930 Jan 1;51(1):123–147. doi: 10.1084/jem.51.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeAngelis P. L., Papaconstantinou J., Weigel P. H. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. J Biol Chem. 1993 Jul 15;268(20):14568–14571. [PubMed] [Google Scholar]
- DeAngelis P. L., Papaconstantinou J., Weigel P. H. Molecular cloning, identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes. J Biol Chem. 1993 Sep 15;268(26):19181–19184. [PubMed] [Google Scholar]
- Deretic V., Gill J. F., Chakrabarty A. M. Pseudomonas aeruginosa infection in cystic fibrosis: nucleotide sequence and transcriptional regulation of the algD gene. Nucleic Acids Res. 1987 Jun 11;15(11):4567–4581. doi: 10.1093/nar/15.11.4567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dillard J. P., Yother J. Analysis of Streptococcus pneumoniae sequences cloned into Escherichia coli: effect of promoter strength and transcription terminators. J Bacteriol. 1991 Aug;173(16):5105–5109. doi: 10.1128/jb.173.16.5105-5109.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dillard J. P., Yother J. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol Microbiol. 1994 Jun;12(6):959–972. doi: 10.1111/j.1365-2958.1994.tb01084.x. [DOI] [PubMed] [Google Scholar]
- Dougherty B. A., van de Rijn I. Molecular characterization of hasA from an operon required for hyaluronic acid synthesis in group A streptococci. J Biol Chem. 1994 Jan 7;269(1):169–175. [PubMed] [Google Scholar]
- Dougherty B. A., van de Rijn I. Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose dehydrogenase activity. J Biol Chem. 1993 Apr 5;268(10):7118–7124. [PubMed] [Google Scholar]
- EPHRUSSI-TAYLOR H. Genetic aspects of transformations of pneumococci. Cold Spring Harb Symp Quant Biol. 1951;16:445–456. doi: 10.1101/sqb.1951.016.01.031. [DOI] [PubMed] [Google Scholar]
- Harr R., Häggström M., Gustafsson P. Search algorithm for pattern match analysis of nucleic acid sequences. Nucleic Acids Res. 1983 May 11;11(9):2943–2957. doi: 10.1093/nar/11.9.2943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- John M., Schmidt J., Wieneke U., Krüssmann H. D., Schell J. Transmembrane orientation and receptor-like structure of the Rhizobium meliloti common nodulation protein NodC. EMBO J. 1988 Mar;7(3):583–588. doi: 10.1002/j.1460-2075.1988.tb02850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson D., Roth L. E., Stacey G. Immunogold localization of the NodC and NodA proteins of Rhizobium meliloti. J Bacteriol. 1989 Sep;171(9):4583–4588. doi: 10.1128/jb.171.9.4583-4588.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katsube T., Kazuta Y., Tanizawa K., Fukui T. Expression in Escherichia coli of UDP-glucose pyrophosphorylase cDNA from potato tuber and functional assessment of the five lysyl residues located at the substrate-binding site. Biochemistry. 1991 Sep 3;30(35):8546–8551. doi: 10.1021/bi00099a008. [DOI] [PubMed] [Google Scholar]
- Kazuta Y., Omura Y., Tagaya M., Nakano K., Fukui T. Identification of lysyl residues located at the substrate-binding site in UDP-glucose pyrophosphorylase from potato tuber: affinity labeling with uridine di- and triphosphopyridoxals. Biochemistry. 1991 Sep 3;30(35):8541–8545. doi: 10.1021/bi00099a007. [DOI] [PubMed] [Google Scholar]
- Kelly T., Dillard J. P., Yother J. Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect Immun. 1994 May;62(5):1813–1819. doi: 10.1128/iai.62.5.1813-1819.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J. C., Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990 Apr 19;344(6268):781–784. doi: 10.1038/344781a0. [DOI] [PubMed] [Google Scholar]
- Pearce B. J., Naughton A. M., Masure H. R. Peptide permeases modulate transformation in Streptococcus pneumoniae. Mol Microbiol. 1994 Jun;12(6):881–892. doi: 10.1111/j.1365-2958.1994.tb01076.x. [DOI] [PubMed] [Google Scholar]
- Pearce B. J., Yin Y. B., Masure H. R. Genetic identification of exported proteins in Streptococcus pneumoniae. Mol Microbiol. 1993 Sep;9(5):1037–1050. doi: 10.1111/j.1365-2958.1993.tb01233.x. [DOI] [PubMed] [Google Scholar]
- Ridley W. P., Houchins J. P., Kirkwood S. Mechanism of action of uridine diphosphoglucose dehydrogenase. Evidence for a second reversible dehydrogenation step involving an essential thiol group. J Biol Chem. 1975 Nov 25;250(22):8761–8767. [PubMed] [Google Scholar]
- SMITH E. E., MILLS G. T., AUSTRIAN R., BERNHEIMER H. P. Uridine pyrophosphoglucose dehydrogenase in capsulated and non-capsulated strains of pneumococcus type I. J Gen Microbiol. 1960 Feb;22:265–271. doi: 10.1099/00221287-22-1-265. [DOI] [PubMed] [Google Scholar]
- SMITH E. E., MILLS G. T., BERNHEIMER H. P., AUSTRIAN R. The formation of uridine pyrophosphoglucuronic acid from uridine pyrophosphoglucose by extracts of a noncapsulated strain of pneumococcus. Biochim Biophys Acta. 1958 Apr;28(1):211–212. doi: 10.1016/0006-3002(58)90455-4. [DOI] [PubMed] [Google Scholar]
- SMITH E. E., MILLS G. T., BERNHEIMER H. P., AUSTRIAN R. The synthesis of type III pneumococcal capsular polysaccharide from uridine nucleotides by a cell-free extract of Diplococcus pneumoniae type III. J Biol Chem. 1960 Jul;235:1876–1880. [PubMed] [Google Scholar]
- Schiller J. G., Lamy F., Frazier R., Feingold D. S. UDP-glucose dehydrogenase from Escherichia coli. Purification and subunit structure. Biochim Biophys Acta. 1976 Dec 22;453(2):418–425. doi: 10.1016/0005-2795(76)90137-9. [DOI] [PubMed] [Google Scholar]
- Sibold C., Wang J., Henrichsen J., Hakenbeck R. Genetic relationships of penicillin-susceptible and -resistant Streptococcus pneumoniae strains isolated on different continents. Infect Immun. 1992 Oct;60(10):4119–4126. doi: 10.1128/iai.60.10.4119-4126.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAYLOR H. E. Additive effects of certain transforming agents from some variants of pneumococcus. J Exp Med. 1949 Apr 1;89(4):399–424. doi: 10.1084/jem.89.4.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Versalovic J., Kapur V., Mason E. O., Jr, Shah U., Koeuth T., Lupski J. R., Musser J. M. Penicillin-resistant Streptococcus pneumoniae strains recovered in Houston: identification and molecular characterization of multiple clones. J Infect Dis. 1993 Apr;167(4):850–856. doi: 10.1093/infdis/167.4.850. [DOI] [PubMed] [Google Scholar]
- Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
- Yother J., Handsome G. L., Briles D. E. Truncated forms of PspA that are secreted from Streptococcus pneumoniae and their use in functional studies and cloning of the pspA gene. J Bacteriol. 1992 Jan;174(2):610–618. doi: 10.1128/jb.174.2.610-618.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yother J., White J. M. Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J Bacteriol. 1994 May;176(10):2976–2985. doi: 10.1128/jb.176.10.2976-2985.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Dam J. E., Fleer A., Snippe H. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie Van Leeuwenhoek. 1990 Jun;58(1):1–47. doi: 10.1007/BF02388078. [DOI] [PubMed] [Google Scholar]