Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Apr 1;181(4):1507–1517. doi: 10.1084/jem.181.4.1507

Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells

PMCID: PMC2191964  PMID: 7535340

Abstract

Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of CD5-expressing B lymphocytes. Most studies have found that these leukemic CD5+ B cells, like their normal counterparts, use immunoglobulin (Ig) variable (V) region genes that exhibit minimal, if any, somatic diversity. These and other observations have suggested that CD5+ B cells may be incapable of generating Ig V gene diversity, and therefore may not be able to develop higher affinity binding sites that could be selected by antigen. However, most of the studies of CLL and normal CD5+ B cells have focused on IgM-producing cells. Since somatic mutations are most often seen in B cells that have undergone an isotype class switch, we analyzed the Ig heavy (H) and light (L) chain variable region genes of seven IgG+CD5+ CLL B cells to determine if somatic diversification and antigen selection had occurred. The data derived provide evidence for skewed use, somatic diversification, and antigenic selection of the Ig V region genes. Nonrandom use of both H and L chain V region genes was manifested by an overrepresentation of VH4 and VKI family genes and the underrepresentation of the JH4 gene segment. Furthermore, VH4 gene use was restricted to only two family members (4.21 and 4.18). In four of the seven cases, the VH and VL genes displayed > or = 5% difference from the most homologous known germline counterparts. Polymerase chain reaction and Southern blot analyses performed in two of these patients demonstrated that their unique VH CDR2 and adjacent sequences were not present in their germline DNA. In addition, a significant level of diversity was seen in the rearranged DJH segments and at the VL-JL junctions of every patient that occurred both at the time of recombination and subsequently. The localization of replacement changes to complementarity determining regions of some patients suggested that antigen selection had occurred. Furthermore, the mutations identified in the VH and VL genes of each individual patient were strikingly similar, both in number and location. Collectively, the data indicate that a subset of CD5+ CLL B cells can display Ig V region gene mutations. In addition, they are consistent with the notions that in some cases antigen selection of these mutations may have occurred, and that antigen stimulation may be a promoting factor in the evolution of certain CLL clones.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahler D. W., Levy R. Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6770–6774. doi: 10.1073/pnas.89.15.6770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhat T. N., Bentley G. A., Fischmann T. O., Boulot G., Poljak R. J. Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding. Nature. 1990 Oct 4;347(6292):483–485. doi: 10.1038/347483a0. [DOI] [PubMed] [Google Scholar]
  3. Borche L., Lim A., Binet J. L., Dighiero G. Evidence that chronic lymphocytic leukemia B lymphocytes are frequently committed to production of natural autoantibodies. Blood. 1990 Aug 1;76(3):562–569. [PubMed] [Google Scholar]
  4. Bröker B. M., Klajman A., Youinou P., Jouquan J., Worman C. P., Murphy J., Mackenzie L., Quartey-Papafio R., Blaschek M., Collins P. Chronic lymphocytic leukemic (CLL) cells secrete multispecific autoantibodies. J Autoimmun. 1988 Oct;1(5):469–481. doi: 10.1016/0896-8411(88)90068-6. [DOI] [PubMed] [Google Scholar]
  5. Cai J., Humphries C., Richardson A., Tucker P. W. Extensive and selective mutation of a rearranged VH5 gene in human B cell chronic lymphocytic leukemia. J Exp Med. 1992 Oct 1;176(4):1073–1081. doi: 10.1084/jem.176.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen C., Roberts V. A., Rittenberg M. B. Generation and analysis of random point mutations in an antibody CDR2 sequence: many mutated antibodies lose their ability to bind antigen. J Exp Med. 1992 Sep 1;176(3):855–866. doi: 10.1084/jem.176.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chiorazzi N., Fu S. M., Montazeri G., Kunkel H. G., Rai K., Gee T. T cell helper defect in patients with chronic lymphocytic leukemia. J Immunol. 1979 Mar;122(3):1087–1090. [PubMed] [Google Scholar]
  8. Davidson A., Preud'homme J. L., Solomon A., Chang M. D., Beede S., Diamond B. Idiotypic analysis of myeloma proteins: anti-DNA activity of monoclonal immunoglobulins bearing an SLE idiotype is more common in IgG than IgM antibodies. J Immunol. 1987 Mar 1;138(5):1515–1518. [PubMed] [Google Scholar]
  9. Davidson A., Smith A., Katz J., Preud'Homme J. L., Solomon A., Diamond B. A cross-reactive idiotype on anti-DNA antibodies defines a H chain determinant present almost exclusively on IgG antibodies. J Immunol. 1989 Jul 1;143(1):174–180. [PubMed] [Google Scholar]
  10. Deane M., Norton J. D. Immunoglobulin gene 'fingerprinting': an approach to analysis of B lymphoid clonality in lymphoproliferative disorders. Br J Haematol. 1991 Mar;77(3):274–281. doi: 10.1111/j.1365-2141.1991.tb08570.x. [DOI] [PubMed] [Google Scholar]
  11. Diamond B., Scharff M. D. Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5841–5844. doi: 10.1073/pnas.81.18.5841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dighiero G., Travade P., Chevret S., Fenaux P., Chastang C., Binet J. L. B-cell chronic lymphocytic leukemia: present status and future directions. French Cooperative Group on CLL. Blood. 1991 Oct 15;78(8):1901–1914. [PubMed] [Google Scholar]
  13. Ebeling S. B., Schutte M. E., Akkermans-Koolhaas K. E., Bloem A. C., Gmelig-Meyling F. H., Logtenberg T. Expression of members of the immunoglobulin VH3 gene families is not restricted at the level of individual genes in human chronic lymphocytic leukemia. Int Immunol. 1992 Mar;4(3):313–320. doi: 10.1093/intimm/4.3.313. [DOI] [PubMed] [Google Scholar]
  14. Elgavish R. A., Schroeder H. W., Jr SAW: a graphical user interface for the analysis of immunoglobulin variable domain sequences. Biotechniques. 1993 Dec;15(6):1066–1071. [PubMed] [Google Scholar]
  15. Esser C., Radbruch A. Immunoglobulin class switching: molecular and cellular analysis. Annu Rev Immunol. 1990;8:717–735. doi: 10.1146/annurev.iy.08.040190.003441. [DOI] [PubMed] [Google Scholar]
  16. Friedman D. F., Cho E. A., Goldman J., Carmack C. E., Besa E. C., Hardy R. R., Silberstein L. E. The role of clonal selection in the pathogenesis of an autoreactive human B cell lymphoma. J Exp Med. 1991 Sep 1;174(3):525–537. doi: 10.1084/jem.174.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fröland S. S., Natvig J. B. Class, subclass, and allelic exclusion of membrane-bound Ig of human B lymphocytes. J Exp Med. 1972 Aug 1;136(2):409–414. doi: 10.1084/jem.136.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fu S. M., Chiorazzi N., Kunkel H. G., Halper J. P., Harris S. R. Induction of in vitro differentiation and immunoglobulin synthesis of human leukemic B lymphocytes. J Exp Med. 1978 Dec 1;148(6):1570–1578. doi: 10.1084/jem.148.6.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gearhart P. J., Johnson N. D., Douglas R., Hood L. IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature. 1981 May 7;291(5810):29–34. doi: 10.1038/291029a0. [DOI] [PubMed] [Google Scholar]
  20. Harindranath N., Ikematsu H., Notkins A. L., Casali P. Structure of the VH and VL segments of polyreactive and monoreactive human natural antibodies to HIV-1 and Escherichia coli beta-galactosidase. Int Immunol. 1993 Dec;5(12):1523–1533. doi: 10.1093/intimm/5.12.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hashimoto S., Gregersen P. K., Chiorazzi N. The human Ig-beta cDNA sequence, a homologue of murine B29, is identical in B cell and plasma cell lines producing all the human Ig isotypes. J Immunol. 1993 Jan 15;150(2):491–498. [PubMed] [Google Scholar]
  22. Hashimoto S., Wakai M., Silver J., Chiorazzi N. Biased usage of variable and constant-region Ig genes by IgG+, CD5+ human leukemic B cells. Ann N Y Acad Sci. 1992 May 4;651:477–479. doi: 10.1111/j.1749-6632.1992.tb24650.x. [DOI] [PubMed] [Google Scholar]
  23. Hayakawa K., Hardy R. R., Herzenberg L. A., Herzenberg L. A. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med. 1985 Jun 1;161(6):1554–1568. doi: 10.1084/jem.161.6.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Herzenberg L. A., Stall A. M., Lalor P. A., Sidman C., Moore W. A., Parks D. R., Herzenberg L. A. The Ly-1 B cell lineage. Immunol Rev. 1986 Oct;93:81–102. doi: 10.1111/j.1600-065x.1986.tb01503.x. [DOI] [PubMed] [Google Scholar]
  25. Hingorani R., Choi I. H., Akolkar P., Gulwani-Akolkar B., Pergolizzi R., Silver J., Gregersen P. K. Clonal predominance of T cell receptors within the CD8+ CD45RO+ subset in normal human subjects. J Immunol. 1993 Nov 15;151(10):5762–5769. [PubMed] [Google Scholar]
  26. Jain R., Roncella S., Hashimoto S., Carbone A., Francia di Celle P., Foa R., Ferrarini M., Chiorazzi N. A potential role for antigen selection in the clonal evolution of Burkitt's lymphoma. J Immunol. 1994 Jul 1;153(1):45–52. [PubMed] [Google Scholar]
  27. Jukes T. H., King J. L. Evolutionary nucleotide replacements in DNA. Nature. 1979 Oct 18;281(5732):605–606. doi: 10.1038/281605a0. [DOI] [PubMed] [Google Scholar]
  28. Kipps T. J., Fong S., Tomhave E., Chen P. P., Goldfien R. D., Carson D. A. High-frequency expression of a conserved kappa light-chain variable-region gene in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1987 May;84(9):2916–2920. doi: 10.1073/pnas.84.9.2916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kipps T. J. Immunoglobulin genes in chronic lymphocytic leukemia. Blood Cells. 1993;19(3):615–632. [PubMed] [Google Scholar]
  30. Lee S. K., Bridges S. L., Jr, Koopman W. J., Schroeder H. W., Jr The immunoglobulin kappa light chain repertoire expressed in the synovium of a patient with rheumatoid arthritis. Arthritis Rheum. 1992 Aug;35(8):905–913. doi: 10.1002/art.1780350809. [DOI] [PubMed] [Google Scholar]
  31. MacLennan I. C. Germinal centers. Annu Rev Immunol. 1994;12:117–139. doi: 10.1146/annurev.iy.12.040194.001001. [DOI] [PubMed] [Google Scholar]
  32. Mantovani L., Wilder R. L., Casali P. Human rheumatoid B-1a (CD5+ B) cells make somatically hypermutated high affinity IgM rheumatoid factors. J Immunol. 1993 Jul 1;151(1):473–488. [PMC free article] [PubMed] [Google Scholar]
  33. Mayer R., Logtenberg T., Strauchen J., Dimitriu-Bona A., Mayer L., Mechanic S., Chiorazzi N., Borche L., Dighiero G., Mannheimer-Lory A. CD5 and immunoglobulin V gene expression in B-cell lymphomas and chronic lymphocytic leukemia. Blood. 1990 Apr 1;75(7):1518–1524. [PubMed] [Google Scholar]
  34. Mayumi M., Kuritani T., Kubagawa H., Cooper M. D. IgG subclass expression by human B lymphocytes and plasma cells: B lymphocytes precommitted to IgG subclass can be preferentially induced by polyclonal mitogens with T cell help. J Immunol. 1983 Feb;130(2):671–677. [PubMed] [Google Scholar]
  35. Pritsch O., Magnac C., Dumas G., Egile C., Dighiero G. V gene usage by seven hybrids derived from CD5+ B-cell chronic lymphocytic leukemia and displaying autoantibody activity. Blood. 1993 Nov 15;82(10):3103–3112. [PubMed] [Google Scholar]
  36. Radic M. Z., Mackle J., Erikson J., Mol C., Anderson W. F., Weigert M. Residues that mediate DNA binding of autoimmune antibodies. J Immunol. 1993 Jun 1;150(11):4966–4977. [PubMed] [Google Scholar]
  37. Radic M. Z., Mascelli M. A., Erikson J., Shan H., Shlomchik M., Weigert M. Structural patterns in anti-DNA antibodies from MRL/lpr mice. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 2):933–946. doi: 10.1101/sqb.1989.054.01.108. [DOI] [PubMed] [Google Scholar]
  38. Rai K. R., Sawitsky A., Cronkite E. P., Chanana A. D., Levy R. N., Pasternack B. S. Clinical staging of chronic lymphocytic leukemia. Blood. 1975 Aug;46(2):219–234. [PubMed] [Google Scholar]
  39. Rassenti L. Z., Kipps T. J. Lack of extensive mutations in the VH5 genes used in common B cell chronic lymphocytic leukemia. J Exp Med. 1993 Apr 1;177(4):1039–1046. doi: 10.1084/jem.177.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Roudier J., Silverman G. J., Chen P. P., Carson D. A., Kipps T. J. Intraclonal diversity in the VH genes expressed by CD5- chronic lymphocytic leukemia-producing pathologic IgM rheumatoid factor. J Immunol. 1990 Feb 15;144(4):1526–1530. [PubMed] [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schroeder H. W., Jr, Dighiero G. The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. Immunol Today. 1994 Jun;15(6):288–294. doi: 10.1016/0167-5699(94)90009-4. [DOI] [PubMed] [Google Scholar]
  43. Stevenson F. K., Spellerberg M. B., Treasure J., Chapman C. J., Silberstein L. E., Hamblin T. J., Jones D. B. Differential usage of an Ig heavy chain variable region gene by human B-cell tumors. Blood. 1993 Jul 1;82(1):224–230. [PubMed] [Google Scholar]
  44. Sthoeger Z. M., Wakai M., Tse D. B., Vinciguerra V. P., Allen S. L., Budman D. R., Lichtman S. M., Schulman P., Weiselberg L. R., Chiorazzi N. Production of autoantibodies by CD5-expressing B lymphocytes from patients with chronic lymphocytic leukemia. J Exp Med. 1989 Jan 1;169(1):255–268. doi: 10.1084/jem.169.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Victor K. D., Capra J. D. An apparently common mechanism of generating antibody diversity: length variation of the VL-JL junction. Mol Immunol. 1994 Jan;31(1):39–46. doi: 10.1016/0161-5890(94)90136-8. [DOI] [PubMed] [Google Scholar]
  46. Wagner S. D., Luzzatto L. V kappa gene segments rearranged in chronic lymphocytic leukemia are distributed over a large portion of the V kappa locus and do not show somatic mutation. Eur J Immunol. 1993 Feb;23(2):391–397. doi: 10.1002/eji.1830230214. [DOI] [PubMed] [Google Scholar]
  47. Wakai M., Hashimoto S., Omata M., Sthoeger Z. M., Allen S. L., Lichtman S. M., Schulman P., Vinciguerra V. P., Diamond B., Dono M. IgG+, CD5+ human chronic lymphocytic leukemia B cells. Production of IgG antibodies that exhibit diminished autoreactivity and IgG subclass skewing. Autoimmunity. 1994;19(1):39–48. doi: 10.3109/08916939409008007. [DOI] [PubMed] [Google Scholar]
  48. Wortis H. H. Surface markers, heavy chain sequences and B cell lineages. Int Rev Immunol. 1992;8(2-3):235–246. doi: 10.3109/08830189209055576. [DOI] [PubMed] [Google Scholar]
  49. Yamada M., Wasserman R., Reichard B. A., Shane S., Caton A. J., Rovera G. Preferential utilization of specific immunoglobulin heavy chain diversity and joining segments in adult human peripheral blood B lymphocytes. J Exp Med. 1991 Feb 1;173(2):395–407. doi: 10.1084/jem.173.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zupo S., Dono M., Azzoni L., Chiorazzi N., Ferrarini M. Evidence for differential responsiveness of human CD5+ and CD5- B cell subsets to T cell-independent mitogens. Eur J Immunol. 1991 Feb;21(2):351–359. doi: 10.1002/eji.1830210216. [DOI] [PubMed] [Google Scholar]
  51. Zupo S., Dono M., Massara R., Taborelli G., Chiorazzi N., Ferrarini M. Expression of CD5 and CD38 by human CD5- B cells: requirement for special stimuli. Eur J Immunol. 1994 Jun;24(6):1426–1433. doi: 10.1002/eji.1830240628. [DOI] [PubMed] [Google Scholar]
  52. van Dijk K. W., Sasso E. H., Milner E. C. Polymorphism of the human Ig VH4 gene family. J Immunol. 1991 May 15;146(10):3646–3651. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES