Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 May 1;181(5):1923–1927. doi: 10.1084/jem.181.5.1923

Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes

PMCID: PMC2191981  PMID: 7722468

Abstract

Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that results in the destruction of the pancreatic islet beta cells. Glutamic acid decarboxylase (GAD) has been recently indicated as a key autoantigen in the induction of IDDM in nonobese diabetic mice. In human diabetes, the mechanism by which the beta cells are destroyed is still unknown. Here we report the first evidence for the presence of GAD-specific cytotoxic T cells in asymptomatic and recent diabetic patients. GAD65 peptides displaying the human histocompatibility leukocyte antigen (HLA)-A*0201 binding motif have been synthesized. One of these peptides, GAD114-123, binds to HLA-A*0201 molecules in an HLA assembly assay. Peripheral blood mononuclear cells from individuals with preclinical IDDM, recent-onset IDDM, and from healthy controls were stimulated in vitro with the selected peptide in the presence of autologous antigen-presenting cells. In three cases (one preclinical IDDM and two recent-onset IDDM), we detected specific killing of autologous antigen-presenting cells when incubated with GAD114-123 peptide or when infected with a recombinant vaccinia virus expressing GAD65. These patients were the only three carrying the HLA-A*0201 allele among the subjects studied. Our finding suggests that GAD- specific cytotoxic T lymphocytes may play a critical role in the initial events of IDDM.

Full Text

The Full Text of this article is available as a PDF (501.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. A., Kaufman D. L., Campbell L., Gibbs K. A., Shah S. C., Bu D. F., Erlander M. G., Tobin A. J., Maclaren N. K. Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. Lancet. 1992 Feb 22;339(8791):458–459. doi: 10.1016/0140-6736(92)91061-c. [DOI] [PubMed] [Google Scholar]
  2. Baekkeskov S., Aanstoot H. J., Christgau S., Reetz A., Solimena M., Cascalho M., Folli F., Richter-Olesen H., De Camilli P., Camilli P. D. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990 Sep 13;347(6289):151–156. doi: 10.1038/347151a0. [DOI] [PubMed] [Google Scholar]
  3. Bendelac A., Carnaud C., Boitard C., Bach J. F. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J Exp Med. 1987 Oct 1;166(4):823–832. doi: 10.1084/jem.166.4.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bodmer H. C., Gotch F. M., McMichael A. J. Class I cross-restricted T cells reveal low responder allele due to processing of viral antigen. Nature. 1989 Feb 16;337(6208):653–655. doi: 10.1038/337653a0. [DOI] [PubMed] [Google Scholar]
  5. Bottazzo G. F., Dean B. M., McNally J. M., MacKay E. H., Swift P. G., Gamble D. R. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med. 1985 Aug 8;313(6):353–360. doi: 10.1056/NEJM198508083130604. [DOI] [PubMed] [Google Scholar]
  6. Cooke A. Autoimmune disease. Gadding around the beta cell. Curr Biol. 1994 Feb 1;4(2):158–160. doi: 10.1016/s0960-9822(94)00038-2. [DOI] [PubMed] [Google Scholar]
  7. Debray-Sachs M., Carnaud C., Boitard C., Cohen H., Gresser I., Bedossa P., Bach J. F. Prevention of diabetes in NOD mice treated with antibody to murine IFN gamma. J Autoimmun. 1991 Apr;4(2):237–248. doi: 10.1016/0896-8411(91)90021-4. [DOI] [PubMed] [Google Scholar]
  8. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  9. Faustman D., Li X. P., Lin H. Y., Fu Y. E., Eisenbarth G., Avruch J., Guo J. Linkage of faulty major histocompatibility complex class I to autoimmune diabetes. Science. 1991 Dec 20;254(5039):1756–1761. doi: 10.1126/science.1763324. [DOI] [PubMed] [Google Scholar]
  10. Gallati H., Pracht I., Schmidt J., Häring P., Garotta G. A simple, rapid and large capacity ELISA for biologically active native and recombinant human IFN gamma. J Biol Regul Homeost Agents. 1987 Jul-Sep;1(3):109–118. [PubMed] [Google Scholar]
  11. Haskins K., McDuffie M. Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science. 1990 Sep 21;249(4975):1433–1436. doi: 10.1126/science.2205920. [DOI] [PubMed] [Google Scholar]
  12. Hunt D. F., Henderson R. A., Shabanowitz J., Sakaguchi K., Michel H., Sevilir N., Cox A. L., Appella E., Engelhard V. H. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science. 1992 Mar 6;255(5049):1261–1263. doi: 10.1126/science.1546328. [DOI] [PubMed] [Google Scholar]
  13. Katz J. D., Wang B., Haskins K., Benoist C., Mathis D. Following a diabetogenic T cell from genesis through pathogenesis. Cell. 1993 Sep 24;74(6):1089–1100. doi: 10.1016/0092-8674(93)90730-e. [DOI] [PubMed] [Google Scholar]
  14. Katz J., Benoist C., Mathis D. Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice. Eur J Immunol. 1993 Dec;23(12):3358–3360. doi: 10.1002/eji.1830231244. [DOI] [PubMed] [Google Scholar]
  15. Kaufman D. L., Clare-Salzler M., Tian J., Forsthuber T., Ting G. S., Robinson P., Atkinson M. A., Sercarz E. E., Tobin A. J., Lehmann P. V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993 Nov 4;366(6450):69–72. doi: 10.1038/366069a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kikutani H., Makino S. The murine autoimmune diabetes model: NOD and related strains. Adv Immunol. 1992;51:285–322. doi: 10.1016/s0065-2776(08)60490-3. [DOI] [PubMed] [Google Scholar]
  17. Liblau R. S., Singer S. M., McDevitt H. O. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995 Jan;16(1):34–38. doi: 10.1016/0167-5699(95)80068-9. [DOI] [PubMed] [Google Scholar]
  18. Lis J., Wu C. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell. 1993 Jul 16;74(1):1–4. doi: 10.1016/0092-8674(93)90286-y. [DOI] [PubMed] [Google Scholar]
  19. Miyazaki T., Matsuda Y., Toyonaga T., Miyazaki J., Yazaki Y., Yamamura K. Prevention of autoimmune insulitis in nonobese diabetic mice by expression of major histocompatibility complex class I Ld molecules. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9519–9523. doi: 10.1073/pnas.89.20.9519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nagata M., Santamaria P., Kawamura T., Utsugi T., Yoon J. W. Evidence for the role of CD8+ cytotoxic T cells in the destruction of pancreatic beta-cells in nonobese diabetic mice. J Immunol. 1994 Feb 15;152(4):2042–2050. [PubMed] [Google Scholar]
  21. Nijman H. W., Houbiers J. G., Vierboom M. P., van der Burg S. H., Drijfhout J. W., D'Amaro J., Kenemans P., Melief C. J., Kast W. M. Identification of peptide sequences that potentially trigger HLA-A2.1-restricted cytotoxic T lymphocytes. Eur J Immunol. 1993 Jun;23(6):1215–1219. doi: 10.1002/eji.1830230603. [DOI] [PubMed] [Google Scholar]
  22. Oh S. H., Fleischhauer K., Yang S. Y. Isoelectric focusing subtypes of HLA-A can be defined by oligonucleotide typing. Tissue Antigens. 1993 Mar;41(3):135–142. doi: 10.1111/j.1399-0039.1993.tb01992.x. [DOI] [PubMed] [Google Scholar]
  23. Sarvetnick N., Shizuru J., Liggitt D., Martin L., McIntyre B., Gregory A., Parslow T., Stewart T. Loss of pancreatic islet tolerance induced by beta-cell expression of interferon-gamma. Nature. 1990 Aug 30;346(6287):844–847. doi: 10.1038/346844a0. [DOI] [PubMed] [Google Scholar]
  24. Taki T., Nagata M., Ogawa W., Hatamori N., Hayakawa M., Hari J., Shii K., Baba S., Yokono K. Prevention of cyclophosphamide-induced and spontaneous diabetes in NOD/Shi/Kbe mice by anti-MHC class I Kd monoclonal antibody. Diabetes. 1991 Sep;40(9):1203–1209. doi: 10.2337/diab.40.9.1203. [DOI] [PubMed] [Google Scholar]
  25. Tanigaki N., Fruci D., Chersi A., Falasca G., Tosi R., Butler R. H. HLA-A2-binding peptides cross-react not only within the A2 subgroup but also with other HLA-A-locus allelic products. Hum Immunol. 1994 Mar;39(3):155–162. doi: 10.1016/0198-8859(94)90255-0. [DOI] [PubMed] [Google Scholar]
  26. Terasaki P. I., Bernoco D., Park M. S., Ozturk G., Iwaki Y. Microdroplet testing for HLA-A, -B, -C, and -D antigens. The Phillip Levine Award Lecture. Am J Clin Pathol. 1978 Feb;69(2):103–120. doi: 10.1093/ajcp/69.2.103. [DOI] [PubMed] [Google Scholar]
  27. Tisch R., Yang X. D., Singer S. M., Liblau R. S., Fugger L., McDevitt H. O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993 Nov 4;366(6450):72–75. doi: 10.1038/366072a0. [DOI] [PubMed] [Google Scholar]
  28. Todd J. A., Bell J. I., McDevitt H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987 Oct 15;329(6140):599–604. doi: 10.1038/329599a0. [DOI] [PubMed] [Google Scholar]
  29. Townsend A., Elliott T., Cerundolo V., Foster L., Barber B., Tse A. Assembly of MHC class I molecules analyzed in vitro. Cell. 1990 Jul 27;62(2):285–295. doi: 10.1016/0092-8674(90)90366-m. [DOI] [PubMed] [Google Scholar]
  30. Trembleau S., Penna G., Bosi E., Mortara A., Gately M. K., Adorini L. Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J Exp Med. 1995 Feb 1;181(2):817–821. doi: 10.1084/jem.181.2.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yagi H., Matsumoto M., Kunimoto K., Kawaguchi J., Makino S., Harada M. Analysis of the roles of CD4+ and CD8+ T cells in autoimmune diabetes of NOD mice using transfer to NOD athymic nude mice. Eur J Immunol. 1992 Sep;22(9):2387–2393. doi: 10.1002/eji.1830220931. [DOI] [PubMed] [Google Scholar]
  32. van Endert P. M., Tampé R., Meyer T. H., Tisch R., Bach J. F., McDevitt H. O. A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity. 1994 Sep;1(6):491–500. doi: 10.1016/1074-7613(94)90091-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES