Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 May 1;181(5):1743–1754. doi: 10.1084/jem.181.5.1743

Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein

PMCID: PMC2191991  PMID: 7536794

Abstract

We have recently shown that lipopolysaccharide (LPS)-binding protein (LBP) is a lipid transfer protein that catalyzes two distinct reactions: movement of bacterial LPS (endotoxin) from LPS micelles to soluble CD14 (sCD14) and movement of LPS from micelles to reconstituted high density lipoprotein (R-HDL) particles. Here we show that LBP facilitates a third lipid transfer reaction: movement of LPS from LPS- sCD14 complexes to R-HDL particles. This action of LBP is catalytic, with one molecule of LBP enabling the movement of multiple LPS molecules into R-HDL. LBP-catalyzed movement of LPS from LPS-sCD14 complexes to R-HDL neutralizes the capacity of LPS to stimulate polymorphonuclear leukocytes. Our findings show that LPS may be transferred to R-HDL either by the direct action of LBP or by a two- step reaction in which LPS is first transferred to sCD14 and subsequently to R-HDL. We have observed that the two-step pathway of LPS transfer to R-HDL is strongly favored over direct transfer. Neutralization of LPS by LBP and R-HDL was accelerated more than 30- fold by addition of sCD14. Several observations suggest that sCD14 accelerates this reaction by serving as a shuttle for LPS: addition of LBP and sCD14 to LPS micelles resulted in LPS-sCD14 complexes that could diffuse through a 100-kD cutoff filter; LPS-sCD14 complexes appeared transiently during movement of LPS to R-HDL facilitated by purified LBP; and sCD14 could facilitate transfer of LPS to R-HDL without becoming part of the final LPS-R-HDL complex. Complexes of LPS and sCD14 were formed transiently when LPS was incubated in plasma, suggesting that these complexes may play a role as intermediates in the neutralization of LPS under physiological conditions. These findings detail a new activity for sCD14 and suggest a novel mechanism for lipid transfer by LBP.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Day J. R., Albers J. J., Lofton-Day C. E., Gilbert T. L., Ching A. F., Grant F. J., O'Hara P. J., Marcovina S. M., Adolphson J. L. Complete cDNA encoding human phospholipid transfer protein from human endothelial cells. J Biol Chem. 1994 Mar 25;269(12):9388–9391. [PubMed] [Google Scholar]
  2. Detmers P. A., Zhou D., Powell D. E. Different signaling pathways for CD18-mediated adhesion and Fc-mediated phagocytosis. Response of neutrophils to LPS. J Immunol. 1994 Sep 1;153(5):2137–2145. [PubMed] [Google Scholar]
  3. Flegel W. A., Baumstark M. W., Weinstock C., Berg A., Northoff H. Prevention of endotoxin-induced monokine release by human low- and high-density lipoproteins and by apolipoprotein A-I. Infect Immun. 1993 Dec;61(12):5140–5146. doi: 10.1128/iai.61.12.5140-5146.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frey E. A., Miller D. S., Jahr T. G., Sundan A., Bazil V., Espevik T., Finlay B. B., Wright S. D. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med. 1992 Dec 1;176(6):1665–1671. doi: 10.1084/jem.176.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hailman E., Lichenstein H. S., Wurfel M. M., Miller D. S., Johnson D. A., Kelley M., Busse L. A., Zukowski M. M., Wright S. D. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994 Jan 1;179(1):269–277. doi: 10.1084/jem.179.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hesler C. B., Tall A. R., Swenson T. L., Weech P. K., Marcel Y. L., Milne R. W. Monoclonal antibodies to the Mr 74,000 cholesteryl ester transfer protein neutralize all of the cholesteryl ester and triglyceride transfer activities in human plasma. J Biol Chem. 1988 Apr 15;263(11):5020–5023. [PubMed] [Google Scholar]
  7. Hubsch A. P., Powell F. S., Lerch P. G., Doran J. E. A reconstituted, apolipoprotein A-I containing lipoprotein reduces tumor necrosis factor release and attenuates shock in endotoxemic rabbits. Circ Shock. 1993 May;40(1):14–23. [PubMed] [Google Scholar]
  8. Levine D. M., Parker T. S., Donnelly T. M., Walsh A., Rubin A. L. In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):12040–12044. doi: 10.1073/pnas.90.24.12040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Matz C. E., Jonas A. Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J Biol Chem. 1982 Apr 25;257(8):4535–4540. [PubMed] [Google Scholar]
  10. Munford R. S., Hall C. L., Dietschy J. M. Binding of Salmonella typhimurium lipopolysaccharides to rat high-density lipoproteins. Infect Immun. 1981 Dec;34(3):835–843. doi: 10.1128/iai.34.3.835-843.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  12. Skarnes R. C. In vivo interaction of endotoxin with a plasma lipoprotein having esterase activity. J Bacteriol. 1968 Jun;95(6):2031–2034. doi: 10.1128/jb.95.6.2031-2034.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sundan A., Gullstein-Jahr T., Otterlei M., Ryan L., Bazil V., Wright S. D., Espevik T. Soluble CD14 from urine copurifies with a potent inducer of cytokines. Eur J Immunol. 1994 Aug;24(8):1779–1784. doi: 10.1002/eji.1830240809. [DOI] [PubMed] [Google Scholar]
  14. Tobias P. S., Soldau K., Ulevitch R. J. Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J Biol Chem. 1989 Jun 25;264(18):10867–10871. [PubMed] [Google Scholar]
  15. Todd R. F., 3rd, Van Agthoven A., Schlossman S. F., Terhorst C. Structural analysis of differentiation antigens Mo1 and Mo2 on human monocytes. Hybridoma. 1982;1(3):329–337. doi: 10.1089/hyb.1.1982.1.329. [DOI] [PubMed] [Google Scholar]
  16. Tollefson J. H., Ravnik S., Albers J. J. Isolation and characterization of a phospholipid transfer protein (LTP-II) from human plasma. J Lipid Res. 1988 Dec;29(12):1593–1602. [PubMed] [Google Scholar]
  17. Ulevitch R. J., Johnston A. R., Weinstein D. B. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest. 1979 Nov;64(5):1516–1524. doi: 10.1172/JCI109610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weisweiler P. Isolation and quantitation of apolipoproteins A-I and A-II from human high-density lipoproteins by fast-protein liquid chromatography. Clin Chim Acta. 1987 Nov 16;169(2-3):249–254. doi: 10.1016/0009-8981(87)90325-1. [DOI] [PubMed] [Google Scholar]
  19. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  20. Wright S. D., Rao P. E., Van Voorhis W. C., Craigmyle L. S., Iida K., Talle M. A., Westberg E. F., Goldstein G., Silverstein S. C. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5699–5703. doi: 10.1073/pnas.80.18.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wright S. D., Tobias P. S., Ulevitch R. J., Ramos R. A. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med. 1989 Oct 1;170(4):1231–1241. doi: 10.1084/jem.170.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wurfel M. M., Kunitake S. T., Lichenstein H., Kane J. P., Wright S. D. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J Exp Med. 1994 Sep 1;180(3):1025–1035. doi: 10.1084/jem.180.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Kessel K. P., Park C. T., Wright S. D. A fluorescence microassay for the quantitation of integrin-mediated adhesion of neutrophil. J Immunol Methods. 1994 Jun 3;172(1):25–31. doi: 10.1016/0022-1759(94)90375-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES