Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 May 1;181(5):1917–1922. doi: 10.1084/jem.181.5.1917

Granzyme A is an interleukin 1 beta-converting enzyme

PMCID: PMC2191995  PMID: 7722467

Abstract

Apoptosis is critically dependent on the presence of the ced-3 gene in Caenorhabditis elegans, which encodes a protein homologous to the mammalian interleukin (IL)-1 beta-converting enzyme (ICE). Overexpression of ICE or ced-3 promotes apoptosis. Cytotoxic T lymphocyte-mediated rapid apoptosis is induced by the proteases granzyme A and B. ICE and granzyme B share the rare substrate site of aspartic acid, after which amino acid cleavage of precursor IL-1 beta (pIL-1 beta) occurs. Here we show that granzyme A, but not granzyme B, converts pIL-1 beta to its 17-kD mature form. Major cleavage occurs at Arg120, four amino acids downstream of the authentic processing site, Asp116. IL-1 beta generated by granzyme A is biologically active. When pIL-1 beta processing is monitored in lipopolysaccharide-activated macrophage target cells attacked by cytotoxic T lymphocytes, intracellular conversion precedes lysis. Prior granzyme inactivation blocks this processing. We conclude that the apoptosis-inducing granzyme A and ICE share at least one downstream target substrate, i.e., pIL-1 beta. This suggests that lymphocytes, by means of their own converting enzyme, could initiate a local inflammatory response independent of the presence of ICE.

Full Text

The Full Text of this article is available as a PDF (649.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black R. A., Kronheim S. R., Cantrell M., Deeley M. C., March C. J., Prickett K. S., Wignall J., Conlon P. J., Cosman D., Hopp T. P. Generation of biologically active interleukin-1 beta by proteolytic cleavage of the inactive precursor. J Biol Chem. 1988 Jul 5;263(19):9437–9442. [PubMed] [Google Scholar]
  2. Black R. A., Kronheim S. R., Merriam J. E., March C. J., Hopp T. P. A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem. 1989 Apr 5;264(10):5323–5326. [PubMed] [Google Scholar]
  3. Cerretti D. P., Kozlosky C. J., Mosley B., Nelson N., Van Ness K., Greenstreet T. A., March C. J., Kronheim S. R., Druck T., Cannizzaro L. A. Molecular cloning of the interleukin-1 beta converting enzyme. Science. 1992 Apr 3;256(5053):97–100. doi: 10.1126/science.1373520. [DOI] [PubMed] [Google Scholar]
  4. Chait B. T., Kent S. B. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science. 1992 Sep 25;257(5078):1885–1894. doi: 10.1126/science.1411504. [DOI] [PubMed] [Google Scholar]
  5. Gagliardini V., Fernandez P. A., Lee R. K., Drexler H. C., Rotello R. J., Fishman M. C., Yuan J. Prevention of vertebrate neuronal death by the crmA gene. Science. 1994 Feb 11;263(5148):826–828. doi: 10.1126/science.8303301. [DOI] [PubMed] [Google Scholar]
  6. Heusel J. W., Wesselschmidt R. L., Shresta S., Russell J. H., Ley T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell. 1994 Mar 25;76(6):977–987. doi: 10.1016/0092-8674(94)90376-x. [DOI] [PubMed] [Google Scholar]
  7. Hogquist K. A., Nett M. A., Unanue E. R., Chaplin D. D. Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8485–8489. doi: 10.1073/pnas.88.19.8485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jenne D. E., Tschopp J. Granzymes: a family of serine proteases in granules of cytolytic T lymphocytes. Curr Top Microbiol Immunol. 1989;140:33–47. doi: 10.1007/978-3-642-73911-8_4. [DOI] [PubMed] [Google Scholar]
  9. Kamogashira T., Sakaguchi M., Ohmoto Y., Mizuno K., Shimizu R., Nagamura K., Nakai S., Masui Y., Hirai Y. Site-specific mutagenesis of the human interleukin-1 beta gene: the role of arginine residue at the N-terminal region. J Biochem. 1988 Nov;104(5):837–840. doi: 10.1093/oxfordjournals.jbchem.a122559. [DOI] [PubMed] [Google Scholar]
  10. Kapur V., Majesky M. W., Li L. L., Black R. A., Musser J. M. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7676–7680. doi: 10.1073/pnas.90.16.7676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kostura M. J., Tocci M. J., Limjuco G., Chin J., Cameron P., Hillman A. G., Chartrain N. A., Schmidt J. A. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5227–5231. doi: 10.1073/pnas.86.14.5227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kumar S., Kinoshita M., Noda M., Copeland N. G., Jenkins N. A. Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev. 1994 Jul 15;8(14):1613–1626. doi: 10.1101/gad.8.14.1613. [DOI] [PubMed] [Google Scholar]
  13. Le Moal M. A., Stoeck M., Cavaillon J. M., MacDonald H. O., Truffa-Bachi P. A sensitive, IL-2-independent, assay for IL-1. J Immunol Methods. 1988 Feb 24;107(1):23–30. doi: 10.1016/0022-1759(88)90004-x. [DOI] [PubMed] [Google Scholar]
  14. Masson D., Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell. 1987 Jun 5;49(5):679–685. doi: 10.1016/0092-8674(87)90544-7. [DOI] [PubMed] [Google Scholar]
  15. Masson D., Zamai M., Tschopp J. Identification of granzyme A isolated from cytotoxic T-lymphocyte-granules as one of the proteases encoded by CTL-specific genes. FEBS Lett. 1986 Nov 10;208(1):84–88. doi: 10.1016/0014-5793(86)81537-x. [DOI] [PubMed] [Google Scholar]
  16. Miura M., Zhu H., Rotello R., Hartwieg E. A., Yuan J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell. 1993 Nov 19;75(4):653–660. doi: 10.1016/0092-8674(93)90486-a. [DOI] [PubMed] [Google Scholar]
  17. Mizutani H., Black R., Kupper T. S. Human keratinocytes produce but do not process pro-interleukin-1 (IL-1) beta. Different strategies of IL-1 production and processing in monocytes and keratinocytes. J Clin Invest. 1991 Mar;87(3):1066–1071. doi: 10.1172/JCI115067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mizutani H., Schechter N., Lazarus G., Black R. A., Kupper T. S. Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase. J Exp Med. 1991 Oct 1;174(4):821–825. doi: 10.1084/jem.174.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Molineaux S. M., Casano F. J., Rolando A. M., Peterson E. P., Limjuco G., Chin J., Griffin P. R., Calaycay J. R., Ding G. J., Yamin T. T. Interleukin 1 beta (IL-1 beta) processing in murine macrophages requires a structurally conserved homologue of human IL-1 beta converting enzyme. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1809–1813. doi: 10.1073/pnas.90.5.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mosley B., Dower S. K., Gillis S., Cosman D. Determination of the minimum polypeptide lengths of the functionally active sites of human interleukins 1 alpha and 1 beta. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4572–4576. doi: 10.1073/pnas.84.13.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Munger W. E., Berrebi G. A., Henkart P. A. Possible involvement of CTL granule proteases in target cell DNA breakdown. Immunol Rev. 1988 Mar;103:99–109. doi: 10.1111/j.1600-065x.1988.tb00752.x. [DOI] [PubMed] [Google Scholar]
  22. Odake S., Kam C. M., Narasimhan L., Poe M., Blake J. T., Krahenbuhl O., Tschopp J., Powers J. C. Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry. 1991 Feb 26;30(8):2217–2227. doi: 10.1021/bi00222a027. [DOI] [PubMed] [Google Scholar]
  23. Romero P., Eberl G., Casanova J. L., Cordey A. S., Widmann C., Luescher I. F., Corradin G., Maryanski J. L. Immunization with synthetic peptides containing a defined malaria epitope induces a highly diverse cytotoxic T lymphocyte response. Evidence that two peptide residues are buried in the MHC molecule. J Immunol. 1992 Mar 15;148(6):1871–1878. [PubMed] [Google Scholar]
  24. Rosenwasser L. J., Webb A. C., Clark B. D., Irie S., Chang L., Dinarello C. A., Gehrke L., Wolff S. M., Rich A., Auron P. E. Expression of biologically active human interleukin 1 subpeptides by transfected simian COS cells. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5243–5246. doi: 10.1073/pnas.83.14.5243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schaerer E., Tschopp J. Cytotoxic mechanisms: cytolytic T cells keep their secrets. Curr Biol. 1993 Mar;3(3):167–169. doi: 10.1016/0960-9822(93)90262-m. [DOI] [PubMed] [Google Scholar]
  26. Shi L., Kam C. M., Powers J. C., Aebersold R., Greenberg A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med. 1992 Dec 1;176(6):1521–1529. doi: 10.1084/jem.176.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shiver J. W., Su L., Henkart P. A. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell. 1992 Oct 16;71(2):315–322. doi: 10.1016/0092-8674(92)90359-k. [DOI] [PubMed] [Google Scholar]
  28. Suda T., Takahashi T., Golstein P., Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993 Dec 17;75(6):1169–1178. doi: 10.1016/0092-8674(93)90326-l. [DOI] [PubMed] [Google Scholar]
  29. Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Howard A. D., Kostura M. J., Miller D. K., Molineaux S. M., Weidner J. R., Aunins J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992 Apr 30;356(6372):768–774. doi: 10.1038/356768a0. [DOI] [PubMed] [Google Scholar]
  30. Walker N. P., Talanian R. V., Brady K. D., Dang L. C., Bump N. J., Ferenz C. R., Franklin S., Ghayur T., Hackett M. C., Hammill L. D. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell. 1994 Jul 29;78(2):343–352. doi: 10.1016/0092-8674(94)90303-4. [DOI] [PubMed] [Google Scholar]
  31. Wang L., Miura M., Bergeron L., Zhu H., Yuan J. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell. 1994 Sep 9;78(5):739–750. doi: 10.1016/s0092-8674(94)90422-7. [DOI] [PubMed] [Google Scholar]
  32. Wilson K. P., Black J. A., Thomson J. A., Kim E. E., Griffith J. P., Navia M. A., Murcko M. A., Chambers S. P., Aldape R. A., Raybuck S. A. Structure and mechanism of interleukin-1 beta converting enzyme. Nature. 1994 Jul 28;370(6487):270–275. doi: 10.1038/370270a0. [DOI] [PubMed] [Google Scholar]
  33. Yuan J., Shaham S., Ledoux S., Ellis H. M., Horvitz H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993 Nov 19;75(4):641–652. doi: 10.1016/0092-8674(93)90485-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES