Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 May 1;181(5):1773–1783. doi: 10.1084/jem.181.5.1773

Differential ability of isolated H-2 Kb subsets to serve as TCR ligands for allo-specific CTL clones: potential role for N-linked glycosylation

PMCID: PMC2192001  PMID: 7722454

Abstract

It is not known whether all forms of cell surface peptide-class I complexes, when bound with relevant peptide antigen, are recognized by T cells. We demonstrate herein that two distinct subsets of the murine H-2 Kb molecule can be separately isolated from H-2b-expressing cell lines using Y3 mAb immunoaffinity chromatography. Although both isolated Kb subsets were found to be strongly reactive with Y3 mAb by ELISA, one Kb subset is S19.8 mAb reactive (Ly-m11+Kb subset) and exhibits low reactivity with the M1/42 antibody, while the other subset is negative for the Ly-m11 epitope and highly reactive with the M1/42 antibody (M1/42high Kb subset). More importantly, whereas the M1/42high Kb subset is a very effective ligand for both TCR and CD8, the Ly-m11+ Kb subset could only function as a CD8 ligand, as determined in allo- specific CD8+ CTL clone adhesion and degranulation assays. Peptides acid-eluted from both Kb subsets sensitized Kb-transfected T2 cells expressing "peptide empty" Kb for lysis to a similar extent by allo-CTL clones, indicating that relevant endogenous peptide antigens are not limiting in the Ly-m11+ Kb subset. The major distinction identified between the two Kb subsets is that they differ substantially in their degree of N-linked glycosylation, with the Ly-m11+ subset containing Kb molecules with larger and more complex carbohydrate modifications than the M1/42high subset. The differences in glycosylation may explain the functional differences observed between the two Kb subsets. It is therefore possible that some forms of glycosylation on class I molecules interfere with TCR recognition and may limit CD8+ T cell responses, perhaps under circumstances where peptide antigen is limiting.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajitkumar P., Geier S. S., Kesari K. V., Borriello F., Nakagawa M., Bluestone J. A., Saper M. A., Wiley D. C., Nathenson S. G. Evidence that multiple residues on both the alpha-helices of the class I MHC molecule are simultaneously recognized by the T cell receptor. Cell. 1988 Jul 1;54(1):47–56. doi: 10.1016/0092-8674(88)90178-x. [DOI] [PubMed] [Google Scholar]
  2. Bernabeu C., van de Rijn M., Lerch P. G., Terhorst C. P. Beta 2-microglobulin from serum associates with MHC class I antigens on the surface of cultured cells. Nature. 1984 Apr 12;308(5960):642–645. doi: 10.1038/308642a0. [DOI] [PubMed] [Google Scholar]
  3. Bezouska K., Vlahas G., Horváth O., Jinochová G., Fiserová A., Giorda R., Chambers W. H., Feizi T., Pospísil M. Rat natural killer cell antigen, NKR-P1, related to C-type animal lectins is a carbohydrate-binding protein. J Biol Chem. 1994 Jun 17;269(24):16945–16952. [PubMed] [Google Scholar]
  4. Blasi E., Radzioch D., Durum S. K., Varesio L. A murine macrophage cell line, immortalized by v-raf and v-myc oncogenes, exhibits normal macrophage functions. Eur J Immunol. 1987 Oct;17(10):1491–1498. doi: 10.1002/eji.1830171016. [DOI] [PubMed] [Google Scholar]
  5. Bluestone J. A., Jameson S., Miller S., Dick R., 2nd Peptide-induced conformational changes in class I heavy chains alter major histocompatibility complex recognition. J Exp Med. 1992 Dec 1;176(6):1757–1761. doi: 10.1084/jem.176.6.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bluestone J. A., Kaliyaperumal A., Jameson S., Miller S., Dick R., 2nd Peptide-induced changes in class I heavy chains alter allorecognition. J Immunol. 1993 Oct 15;151(8):3943–3953. [PubMed] [Google Scholar]
  7. Boog C. J., Neefjes J. J., Boes J., Ploegh H. L., Melief C. J. Specific immune responses restored by alteration in carbohydrate chains of surface molecules on antigen-presenting cells. Eur J Immunol. 1989 Mar;19(3):537–542. doi: 10.1002/eji.1830190319. [DOI] [PubMed] [Google Scholar]
  8. Brennan J., Mager D., Jefferies W., Takei F. Expression of different members of the Ly-49 gene family defines distinct natural killer cell subsets and cell adhesion properties. J Exp Med. 1994 Dec 1;180(6):2287–2295. doi: 10.1084/jem.180.6.2287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chattopadhyay S., Theobald M., Biggs J., Sherman L. A. Conformational differences in major histocompatibility complex-peptide complexes can result in alloreactivity. J Exp Med. 1994 Jan 1;179(1):213–219. doi: 10.1084/jem.179.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evavold B. D., Sloan-Lancaster J., Allen P. M. Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. Immunol Today. 1993 Dec;14(12):602–609. doi: 10.1016/0167-5699(93)90200-5. [DOI] [PubMed] [Google Scholar]
  11. Fukuda M. Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochim Biophys Acta. 1985;780(2):119–150. doi: 10.1016/0304-419x(84)90002-7. [DOI] [PubMed] [Google Scholar]
  12. Goldstein S. A., Mescher M. F. Carbohydrate moieties of major histocompatibility complex class I alloantigens are not required for their recognition by T lymphocytes. J Exp Med. 1985 Oct 1;162(4):1381–1386. doi: 10.1084/jem.162.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heath W. R., Kane K. P., Mescher M. F., Sherman L. A. Alloreactive T cells discriminate among a diverse set of endogenous peptides. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5101–5105. doi: 10.1073/pnas.88.12.5101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hogquist K. A., Grandea A. G., 3rd, Bevan M. J. Peptide variants reveal how antibodies recognize major histocompatibility complex class I. Eur J Immunol. 1993 Nov;23(11):3028–3036. doi: 10.1002/eji.1830231145. [DOI] [PubMed] [Google Scholar]
  15. Hämmerling G. J., Rüsch E., Tada N., Kimura S., Hämmerling U. Localization of allodeterminants on H-2Kb antigens determined with monoclonal antibodies and H-2 mutant mice. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4737–4741. doi: 10.1073/pnas.79.15.4737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jackson M. R., Song E. S., Yang Y., Peterson P. A. Empty and peptide-containing conformers of class I major histocompatibility complex molecules expressed in Drosophila melanogaster cells. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12117–12121. doi: 10.1073/pnas.89.24.12117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jameson S. C., Carbone F. R., Bevan M. J. Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J Exp Med. 1993 Jun 1;177(6):1541–1550. doi: 10.1084/jem.177.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones P. P. Analysis of H-2 and Ia molecules by two-dimensional gel electrophoresis. J Exp Med. 1977 Nov 1;146(5):1261–1279. doi: 10.1084/jem.146.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kane K. P., Champoux P., Mescher M. F. Solid-phase binding of class I and II MHC proteins: immunoassay and T cell recognition. Mol Immunol. 1989 Aug;26(8):759–768. doi: 10.1016/0161-5890(89)90036-9. [DOI] [PubMed] [Google Scholar]
  20. Kane K. P., Goldstein S. A., Mescher M. F. Class I alloantigen is sufficient for cytolytic T lymphocyte binding and transmembrane signaling. Eur J Immunol. 1988 Dec;18(12):1925–1929. doi: 10.1002/eji.1830181209. [DOI] [PubMed] [Google Scholar]
  21. Kane K. P. Ly-49 mediates EL4 lymphoma adhesion to isolated class I major histocompatibility complex molecules. J Exp Med. 1994 Mar 1;179(3):1011–1015. doi: 10.1084/jem.179.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kane K. P., Mescher M. F. Activation of CD8-dependent cytotoxic T lymphocyte adhesion and degranulation by peptide class I antigen complexes. J Immunol. 1993 Jun 1;150(11):4788–4797. [PubMed] [Google Scholar]
  23. Kane K. P., Sherman L. A., Mescher M. F. Molecular interactions required for triggering alloantigen-specific cytolytic T lymphocytes. J Immunol. 1989 Jun 15;142(12):4153–4160. [PubMed] [Google Scholar]
  24. Karlhofer F. M., Ribaudo R. K., Yokoyama W. M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature. 1992 Jul 2;358(6381):66–70. doi: 10.1038/358066a0. [DOI] [PubMed] [Google Scholar]
  25. Krakauer T., Hansen T. H., Camerini-Otero R. D., Sachs D. H. Analysis of the heterogeneity of the mouse H-2K, D, and L gene products. J Immunol. 1980 May;124(5):2149–2156. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Le A. V., Doyle D. Differential regulation of mouse H-2 alloantigens. Biochemistry. 1982 Nov 9;21(23):5730–5738. doi: 10.1021/bi00266a001. [DOI] [PubMed] [Google Scholar]
  28. Lemke H., Hämmerling G. J., Hämmerling U. Fine specificity analysis with monoclonal antibodies of antigens controlled by the major histocompatibility complex and by the Qa/TL region in mice. Immunol Rev. 1979;47:175–206. doi: 10.1111/j.1600-065x.1979.tb00293.x. [DOI] [PubMed] [Google Scholar]
  29. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lew A. M., Margulies D. H., Maloy W. L., Lillehoj E. P., McCluskey J., Coligan J. E. Alternative protein products with different carboxyl termini from a single class I gene, H-2Kb. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6084–6088. doi: 10.1073/pnas.83.16.6084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Loken M. R., Stall A. M. Flow cytometry as an analytical and preparative tool in immunology. J Immunol Methods. 1982;50(3):R85–112. doi: 10.1016/0022-1759(82)90161-2. [DOI] [PubMed] [Google Scholar]
  32. Mescher M. F., Stallcup K. C., Sullivan C. P., Turkewitz A. P., Herrmann S. H. Purification of murine MHC antigens by monoclonal antibody affinity chromatography. Methods Enzymol. 1983;92:86–109. doi: 10.1016/0076-6879(83)92011-6. [DOI] [PubMed] [Google Scholar]
  33. Miyazaki J., Appella E., Zhao H., Forman J., Ozato K. Expression and function of a nonglycosylated major histocompatibility class I antigen. J Exp Med. 1986 Apr 1;163(4):856–871. doi: 10.1084/jem.163.4.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. O'Neill H. C. Monoclonal antibodies which identify carbohydrate-defined MHC class I epitopes. Immunol Cell Biol. 1991 Jun;69(Pt 3):159–165. doi: 10.1038/icb.1991.24. [DOI] [PubMed] [Google Scholar]
  35. O'Rourke A. M., Mescher M. F. The roles of CD8 in cytotoxic T lymphocyte function. Immunol Today. 1993 Apr;14(4):183–188. doi: 10.1016/0167-5699(93)90283-q. [DOI] [PubMed] [Google Scholar]
  36. O'Rourke A. M., Rogers J., Mescher M. F. Activated CD8 binding to class I protein mediated by the T-cell receptor results in signalling. Nature. 1990 Jul 12;346(6280):187–189. doi: 10.1038/346187a0. [DOI] [PubMed] [Google Scholar]
  37. Rogers M. J. An improved preparation of murine histocompatibility antigens (H-2b) and a novel membrane binding form of H-2Kb. Biochem Biophys Res Commun. 1981 Jul 30;101(2):426–433. doi: 10.1016/0006-291x(81)91277-8. [DOI] [PubMed] [Google Scholar]
  38. Rogers M. J., Robinson E. A., Appella E. The purification of murine histocompatibility antigens (H-2b) from RBL-5 tumor cells using detergents. J Biol Chem. 1979 Nov 10;254(21):11126–11133. [PubMed] [Google Scholar]
  39. Rötzschke O., Falk K., Faath S., Rammensee H. G. On the nature of peptides involved in T cell alloreactivity. J Exp Med. 1991 Nov 1;174(5):1059–1071. doi: 10.1084/jem.174.5.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Saitoh O., Wang W. C., Lotan R., Fukuda M. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem. 1992 Mar 15;267(8):5700–5711. [PubMed] [Google Scholar]
  41. Sarmiento M., Glasebrook A. L., Fitch F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol. 1980 Dec;125(6):2665–2672. [PubMed] [Google Scholar]
  42. Sherman L. A., Chattopadhyay S., Biggs J. A., Dick R. F., 2nd, Bluestone J. A. Alloantibodies can discriminate class I major histocompatibility complex molecules associated with various endogenous peptides. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6949–6951. doi: 10.1073/pnas.90.15.6949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sherman L. A., Randolph C. P. Monoclonal anti-H-2Kb antibodies detect serological differences between H-2Kb mutants. Immunogenetics. 1981;12(1-2):183–186. doi: 10.1007/BF01561661. [DOI] [PubMed] [Google Scholar]
  44. Swiedler S. J., Freed J. H., Tarentino A. L., Plummer T. H., Jr, Hart G. W. Oligosaccharide microheterogeneity of the murine major histocompatibility antigens. Reproducible site-specific patterns of sialylation and branching in asparagine-linked oligosaccharides. J Biol Chem. 1985 Apr 10;260(7):4046–4054. [PubMed] [Google Scholar]
  45. Tada N., Kimura S., Hatzfeld A., Hämmerling U. Ly-m11: the H-3 region of mouse chromosome 2 controls a new surface alloantigen. Immunogenetics. 1980;11(5):441–449. doi: 10.1007/BF01567813. [DOI] [PubMed] [Google Scholar]
  46. Tatake R. J., Zeff R. A. Assembly-dependent expression of antigenic epitopes by beta 2-microglobulin(b). Immunogenetics. 1993;38(5):318–322. doi: 10.1007/BF00210472. [DOI] [PubMed] [Google Scholar]
  47. Thor G., Sepulveda H., Chada S., Dutton R. W. Monoclonal antibody that distinguishes between a phosphorylated, beta 2-microglobulin-associated, and a free, nonphosphorylated, chain of MHC class I. J Immunol. 1993 Jul 1;151(1):211–224. [PubMed] [Google Scholar]
  48. Trowbridge I. S., Ralph P., Bevan M. J. Differences in the surface proteins of mouse B and T cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):157–161. doi: 10.1073/pnas.72.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wei M. L., Cresswell P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature. 1992 Apr 2;356(6368):443–446. doi: 10.1038/356443a0. [DOI] [PubMed] [Google Scholar]
  50. Williams D. B., Borriello F., Zeff R. A., Nathenson S. G. Intracellular transport of class I histocompatibility molecules. Influence of protein folding on transport to the cell surface. J Biol Chem. 1988 Apr 5;263(10):4549–4560. [PubMed] [Google Scholar]
  51. Williams D. B., Swiedler S. J., Hart G. W. Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J Cell Biol. 1985 Sep;101(3):725–734. doi: 10.1083/jcb.101.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES