Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 May 1;181(5):1827–1834. doi: 10.1084/jem.181.5.1827

The intracellular signal transduction mechanism of interleukin 5 in eosinophils: the involvement of lyn tyrosine kinase and the Ras-Raf-1- MEK-microtubule-associated protein kinase pathway

PMCID: PMC2192005  PMID: 7722458

Abstract

Interleukin 5 (IL-5) regulates the growth and function of eosinophils. The objective of this study was to investigate the intracellular signal transduction mechanism of IL-5 in eosinophils. Purified eosinophils were stimulated with IL-5, and the involvement of various kinases was investigated by immunoblotting, immune complex kinase assay, and in situ denatured/renatured kinase assay. We found that IL-5 induced tyrosine phosphorylation and activation of a number of kinases. Two species of lyn kinases (53 and 56 kD) were present in eosinophils. Both forms were Tyr-phosphorylated and activated rapidly within 1 min. Further, lyn kinase was physically associated with the IL-5 beta receptor in eosinophils. Ras was studied by immunoprecipitation followed by thin-layer chromatography. Ras bound higher quantities of [alpha-32P]guanosine 5'triphosphate upon stimulation with IL-5. Raf-1 kinase showed increased Tyr phosphorylation on immunoblotting and increased activity in the immune complex kinase assay. Two species of MEK (MAP or Erk kinase) (41 and 45 kD) were identified in eosinophils, which underwent autophosphorylation upon stimulation. Microtubule- associated protein (MAP) kinase (p44) was Tyr-phosphorylated on immunoblotting and had increased activity in the immune-complex kinase assay. MAP kinases were also studied after metabolic radiolabeling of the cells with [32P]orthophosphates. IL-5 stimulated phosphorylation of MAP kinases in situ. Thus, we have delineated major components of an important signaling pathway in eosinophils. We believe that one of the signals generated by IL-5 receptor activation is propagated through the lyn-Ras-Raf-1-MEK-MAP kinase pathway.

Full Text

The Full Text of this article is available as a PDF (1,023.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam R., Stafford S., Forsythe P., Harrison R., Faubion D., Lett-Brown M. A., Grant J. A. RANTES is a chemotactic and activating factor for human eosinophils. J Immunol. 1993 Apr 15;150(8 Pt 1):3442–3448. [PubMed] [Google Scholar]
  2. Bousquet J., Chanez P., Lacoste J. Y., Barnéon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P. Eosinophilic inflammation in asthma. N Engl J Med. 1990 Oct 11;323(15):1033–1039. doi: 10.1056/NEJM199010113231505. [DOI] [PubMed] [Google Scholar]
  3. Carroll M. P., Clark-Lewis I., Rapp U. R., May W. S. Interleukin-3 and granulocyte-macrophage colony-stimulating factor mediate rapid phosphorylation and activation of cytosolic c-raf. J Biol Chem. 1990 Nov 15;265(32):19812–19817. [PubMed] [Google Scholar]
  4. Coffman R. L., Seymour B. W., Hudak S., Jackson J., Rennick D. Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science. 1989 Jul 21;245(4915):308–310. doi: 10.1126/science.2787531. [DOI] [PubMed] [Google Scholar]
  5. Corey S. J., Burkhardt A. L., Bolen J. B., Geahlen R. L., Tkatch L. S., Tweardy D. J. Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4683–4687. doi: 10.1073/pnas.91.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dent L. A., Strath M., Mellor A. L., Sanderson C. J. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990 Nov 1;172(5):1425–1431. doi: 10.1084/jem.172.5.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feig L. A. The many roads that lead to Ras. Science. 1993 May 7;260(5109):767–768. doi: 10.1126/science.8484117. [DOI] [PubMed] [Google Scholar]
  8. Force T., Bonventre J. V., Heidecker G., Rapp U., Avruch J., Kyriakis J. M. Enzymatic characteristics of the c-Raf-1 protein kinase. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1270–1274. doi: 10.1073/pnas.91.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukamachi H., Takei M., Kawakami T. Activation of multiple protein kinases including a MAP kinase upon Fc epsilon RI cross-linking. Int Arch Allergy Immunol. 1993;102(1):15–25. doi: 10.1159/000236546. [DOI] [PubMed] [Google Scholar]
  10. Gomez-Cambronero J., Colasanto J. M., Huang C. K., Sha'afi R. I. Direct stimulation by tyrosine phosphorylation of microtubule-associated protein (MAP) kinase activity by granulocyte-macrophage colony-stimulating factor in human neutrophils. Biochem J. 1993 Apr 1;291(Pt 1):211–217. doi: 10.1042/bj2910211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gärtner I. Separation of human eosinophils in density gradients of polyvinylpyrrolidone-coated silica gel (Percoll). Immunology. 1980 May;40(1):133–136. [PMC free article] [PubMed] [Google Scholar]
  12. Harwood A. E., Cambier J. C. B cell antigen receptor cross-linking triggers rapid protein kinase C independent activation of p21ras1. J Immunol. 1993 Nov 1;151(9):4513–4522. [PubMed] [Google Scholar]
  13. Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marmé D., Rapp U. R. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 1993 Jul 15;364(6434):249–252. doi: 10.1038/364249a0. [DOI] [PubMed] [Google Scholar]
  14. Koyasu S., Tse A. G., Moingeon P., Hussey R. E., Mildonian A., Hannisian J., Clayton L. K., Reinherz E. L. Delineation of a T-cell activation motif required for binding of protein tyrosine kinases containing tandem SH2 domains. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6693–6697. doi: 10.1073/pnas.91.14.6693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
  16. Lange-Carter C. A., Pleiman C. M., Gardner A. M., Blumer K. J., Johnson G. L. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science. 1993 Apr 16;260(5106):315–319. doi: 10.1126/science.8385802. [DOI] [PubMed] [Google Scholar]
  17. Li S., Sedivy J. M. Raf-1 protein kinase activates the NF-kappa B transcription factor by dissociating the cytoplasmic NF-kappa B-I kappa B complex. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9247–9251. doi: 10.1073/pnas.90.20.9247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin J., Justement L. B. The MB-1/B29 heterodimer couples the B cell antigen receptor to multiple src family protein tyrosine kinases. J Immunol. 1992 Sep 1;149(5):1548–1555. [PubMed] [Google Scholar]
  19. Lopez A. F., Elliott M. J., Woodcock J., Vadas M. A. GM-CSF, IL-3 and IL-5: cross-competition on human haemopoietic cells. Immunol Today. 1992 Dec;13(12):495–500. doi: 10.1016/0167-5699(92)90025-3. [DOI] [PubMed] [Google Scholar]
  20. Morrison D. K., Kaplan D. R., Escobedo J. A., Rapp U. R., Roberts T. M., Williams L. T. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor. Cell. 1989 Aug 25;58(4):649–657. doi: 10.1016/0092-8674(89)90100-1. [DOI] [PubMed] [Google Scholar]
  21. Pleiman C. M., Abrams C., Gauen L. T., Bedzyk W., Jongstra J., Shaw A. S., Cambier J. C. Distinct p53/56lyn and p59fyn domains associate with nonphosphorylated and phosphorylated Ig-alpha. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4268–4272. doi: 10.1073/pnas.91.10.4268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rozakis-Adcock M., Fernley R., Wade J., Pawson T., Bowtell D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature. 1993 May 6;363(6424):83–85. doi: 10.1038/363083a0. [DOI] [PubMed] [Google Scholar]
  23. Sato N., Sakamaki K., Terada N., Arai K., Miyajima A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J. 1993 Nov;12(11):4181–4189. doi: 10.1002/j.1460-2075.1993.tb06102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sato S., Katagiri T., Takaki S., Kikuchi Y., Hitoshi Y., Yonehara S., Tsukada S., Kitamura D., Watanabe T., Witte O. IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton's tyrosine and Janus 2 kinases. J Exp Med. 1994 Dec 1;180(6):2101–2111. doi: 10.1084/jem.180.6.2101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Satoh T., Nakafuku M., Miyajima A., Kaziro Y. Involvement of ras p21 protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3314–3318. doi: 10.1073/pnas.88.8.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stokoe D., Macdonald S. G., Cadwallader K., Symons M., Hancock J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science. 1994 Jun 3;264(5164):1463–1467. doi: 10.1126/science.7811320. [DOI] [PubMed] [Google Scholar]
  27. Terada N., Konno A., Tada H., Shirotori K., Ishikawa K., Togawa K. The effect of recombinant human interleukin-5 on eosinophil accumulation and degranulation in human nasal mucosa. J Allergy Clin Immunol. 1992 Aug;90(2):160–168. doi: 10.1016/0091-6749(92)90067-c. [DOI] [PubMed] [Google Scholar]
  28. Thomas G. MAP kinase by any other name smells just as sweet. Cell. 1992 Jan 10;68(1):3–6. doi: 10.1016/0092-8674(92)90199-m. [DOI] [PubMed] [Google Scholar]
  29. Thomas S. M., DeMarco M., D'Arcangelo G., Halegoua S., Brugge J. S. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell. 1992 Mar 20;68(6):1031–1040. doi: 10.1016/0092-8674(92)90075-n. [DOI] [PubMed] [Google Scholar]
  30. Thompson H. L., Shiroo M., Saklatvala J. The chemotactic factor N-formylmethionyl-leucyl-phenylalanine activates microtubule-associated protein 2 (MAP) kinase and a MAP kinase kinase in polymorphonuclear leucocytes. Biochem J. 1993 Mar 1;290(Pt 2):483–488. doi: 10.1042/bj2900483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Torigoe T., O'Connor R., Santoli D., Reed J. C. Interleukin-3 regulates the activity of the LYN protein-tyrosine kinase in myeloid-committed leukemic cell lines. Blood. 1992 Aug 1;80(3):617–624. [PubMed] [Google Scholar]
  32. Welham M. J., Duronio V., Sanghera J. S., Pelech S. L., Schrader J. W. Multiple hemopoietic growth factors stimulate activation of mitogen-activated protein kinase family members. J Immunol. 1992 Sep 1;149(5):1683–1693. [PubMed] [Google Scholar]
  33. Williams N. G., Paradis H., Agarwal S., Charest D. L., Pelech S. L., Roberts T. M. Raf-1 and p21v-ras cooperate in the activation of mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5772–5776. doi: 10.1073/pnas.90.12.5772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamaguchi Y., Suda T., Suda J., Eguchi M., Miura Y., Harada N., Tominaga A., Takatsu K. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med. 1988 Jan 1;167(1):43–56. doi: 10.1084/jem.167.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yan M., Templeton D. J. Identification of 2 serine residues of MEK-1 that are differentially phosphorylated during activation by raf and MEK kinase. J Biol Chem. 1994 Jul 22;269(29):19067–19073. [PubMed] [Google Scholar]
  36. Zheng C. F., Guan K. L. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J Biol Chem. 1993 May 25;268(15):11435–11439. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES