Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 May 1;181(5):1705–1714. doi: 10.1084/jem.181.5.1705

Intracellular targeting of antigens internalized by membrane immunoglobulin in B lymphocytes

PMCID: PMC2192014  PMID: 7722449

Abstract

An important function of membrane immunoglobulin (mIg), the B cell antigen receptor, is to endocytose limiting quantities of antigen for efficient presentation to class II-restricted T cells. We have used a panel of mIg mutants to analyze the mechanism of mIg-mediated antigen presentation, and specifically to explore the ability of mIg to target internalized antigen to intracellular processing compartments. Transfected mIgs carrying substitutions for the transmembrane Tyr587 residue fail to efficiently present specifically bound antigen. However, these mutants internalize antigen normally, and their defect cannot be attributed to a lack of mIg-associated Ig alpha/Ig beta molecules. A novel functional assay for detecting antigenic peptides in subcellular fractions shows that wild-type mIg transfectants generate class II-peptide complexes intracellularly, whereas only free antigenic peptides are detectable in the mutant mIg transfectants. Furthermore, an antigen competition assay reveals that antigen internalized by the mutant mIgs fails to enter the intracellular processing compartment accessed by wild-type mIg. Therefore, mIg specifically targets bound and endocytosed antigen to the intracellular compartment where processed peptides associate with class II molecules, and the transmembrane Tyr587 residue plays an obligatory role in this process. Targeting of internalized antigen may be mediated by receptor- associated chaperones, and may be a general mechanism for optimizing the presentation of specifically bound and endocytosed antigens in b lymphocytes and other antigen-presenting cells.

Full Text

The Full Text of this article is available as a PDF (980.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amigorena S., Drake J. R., Webster P., Mellman I. Transient accumulation of new class II MHC molecules in a novel endocytic compartment in B lymphocytes. Nature. 1994 May 12;369(6476):113–120. doi: 10.1038/369113a0. [DOI] [PubMed] [Google Scholar]
  2. Barnes K. A., Mitchell R. N. Detection of functional class II-associated antigen: role of a low density endosomal compartment in antigen processing. J Exp Med. 1995 May 1;181(5):1715–1727. doi: 10.1084/jem.181.5.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaufay H., Amar-Costesec A., Feytmans E., Thinès-Sempoux D., Wibo M., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J Cell Biol. 1974 Apr;61(1):188–200. doi: 10.1083/jcb.61.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boom W. H., Liano D., Abbas A. K. Heterogeneity of helper/inducer T lymphocytes. II. Effects of interleukin 4- and interleukin 2-producing T cell clones on resting B lymphocytes. J Exp Med. 1988 Apr 1;167(4):1350–1363. doi: 10.1084/jem.167.4.1350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buus S., Colon S., Smith C., Freed J. H., Miles C., Grey H. M. Interaction between a "processed" ovalbumin peptide and Ia molecules. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3968–3971. doi: 10.1073/pnas.83.11.3968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Canfield W. M., Johnson K. F., Ye R. D., Gregory W., Kornfeld S. Localization of the signal for rapid internalization of the bovine cation-independent mannose 6-phosphate/insulin-like growth factor-II receptor to amino acids 24-29 of the cytoplasmic tail. J Biol Chem. 1991 Mar 25;266(9):5682–5688. [PubMed] [Google Scholar]
  7. Casten L. A., Pierce S. K. Receptor-mediated B cell antigen processing. Increased antigenicity of a globular protein covalently coupled to antibodies specific for B cell surface structures. J Immunol. 1988 Jan 15;140(2):404–410. [PubMed] [Google Scholar]
  8. Collawn J. F., Stangel M., Kuhn L. A., Esekogwu V., Jing S. Q., Trowbridge I. S., Tainer J. A. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell. 1990 Nov 30;63(5):1061–1072. doi: 10.1016/0092-8674(90)90509-d. [DOI] [PubMed] [Google Scholar]
  9. Davidson H. W., West M. A., Watts C. Endocytosis, intracellular trafficking, and processing of membrane IgG and monovalent antigen/membrane IgG complexes in B lymphocytes. J Immunol. 1990 Jun 1;144(11):4101–4109. [PubMed] [Google Scholar]
  10. Davis C. G., van Driel I. R., Russell D. W., Brown M. S., Goldstein J. L. The low density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis. J Biol Chem. 1987 Mar 25;262(9):4075–4082. [PubMed] [Google Scholar]
  11. Garippa R. J., Judge T. W., James D. E., McGraw T. E. The amino terminus of GLUT4 functions as an internalization motif but not an intracellular retention signal when substituted for the transferrin receptor cytoplasmic domain. J Cell Biol. 1994 Mar;124(5):705–715. doi: 10.1083/jcb.124.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Griffith I. J., Nabavi N., Ghogawala Z., Chase C. G., Rodriguez M., McKean D. J., Glimcher L. H. Structural mutation affecting intracellular transport and cell surface expression of murine class II molecules. J Exp Med. 1988 Feb 1;167(2):541–555. doi: 10.1084/jem.167.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grupp S. A., Campbell K., Mitchell R. N., Cambier J. C., Abbas A. K. Signaling-defective mutants of the B lymphocyte antigen receptor fail to associate with Ig-alpha and Ig-beta/gamma. J Biol Chem. 1993 Dec 5;268(34):25776–25779. [PubMed] [Google Scholar]
  14. Guagliardi L. E., Koppelman B., Blum J. S., Marks M. S., Cresswell P., Brodsky F. M. Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature. 1990 Jan 11;343(6254):133–139. doi: 10.1038/343133a0. [DOI] [PubMed] [Google Scholar]
  15. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985 Apr 11;314(6011):537–539. doi: 10.1038/314537a0. [DOI] [PubMed] [Google Scholar]
  16. Liu K. J., Parikh V. S., Tucker P. W., Kim B. S. Role of the B cell antigen receptor in antigen processing and presentation. Involvement of the transmembrane region in intracellular trafficking of receptor/ligand complexes. J Immunol. 1993 Dec 1;151(11):6143–6154. [PubMed] [Google Scholar]
  17. McCoy K. L., Noone M., Inman J. K., Stutzman R. Exogenous antigens internalized through transferrin receptors activate CD4+ T cells. J Immunol. 1993 Mar 1;150(5):1691–1704. [PubMed] [Google Scholar]
  18. Mitchell R. N., Shaw A. C., Weaver Y. K., Leder P., Abbas A. K. Cytoplasmic tail deletion converts membrane immunoglobulin to a phosphatidylinositol-linked form lacking signaling and efficient antigen internalization functions. J Biol Chem. 1991 May 15;266(14):8856–8860. [PubMed] [Google Scholar]
  19. Niebling W. L., Pierce S. K. Antigen entry into early endosomes is insufficient for MHC class II processing. J Immunol. 1993 Apr 1;150(7):2687–2697. [PubMed] [Google Scholar]
  20. Parikh V. S., Bishop G. A., Liu K. J., Do B. T., Ghosh M. R., Kim B. S., Tucker P. W. Differential structure-function requirements of the transmembranal domain of the B cell antigen receptor. J Exp Med. 1992 Oct 1;176(4):1025–1031. doi: 10.1084/jem.176.4.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Patel K. J., Neuberger M. S. Antigen presentation by the B cell antigen receptor is driven by the alpha/beta sheath and occurs independently of its cytoplasmic tyrosines. Cell. 1993 Sep 10;74(5):939–946. doi: 10.1016/0092-8674(93)90473-4. [DOI] [PubMed] [Google Scholar]
  22. Pleiman C. M., Chien N. C., Cambier J. C. Point mutations define a mIgM transmembrane region motif that determines intersubunit signal transduction in the antigen receptor. J Immunol. 1994 Mar 15;152(6):2837–2844. [PubMed] [Google Scholar]
  23. Qiu Y., Xu X., Wandinger-Ness A., Dalke D. P., Pierce S. K. Separation of subcellular compartments containing distinct functional forms of MHC class II. J Cell Biol. 1994 May;125(3):595–605. doi: 10.1083/jcb.125.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rock K. L., Benacerraf B., Abbas A. K. Antigen presentation by hapten-specific B lymphocytes. I. Role of surface immunoglobulin receptors. J Exp Med. 1984 Oct 1;160(4):1102–1113. doi: 10.1084/jem.160.4.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanchez M., Misulovin Z., Burkhardt A. L., Mahajan S., Costa T., Franke R., Bolen J. B., Nussenzweig M. Signal transduction by immunoglobulin is mediated through Ig alpha and Ig beta. J Exp Med. 1993 Sep 1;178(3):1049–1055. doi: 10.1084/jem.178.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shaw A. C., Mitchell R. N., Weaver Y. K., Campos-Torres J., Abbas A. K., Leder P. Mutations of immunoglobulin transmembrane and cytoplasmic domains: effects on intracellular signaling and antigen presentation. Cell. 1990 Oct 19;63(2):381–392. doi: 10.1016/0092-8674(90)90171-a. [DOI] [PubMed] [Google Scholar]
  27. Stevens T. L., Blum J. H., Foy S. P., Matsuuchi L., DeFranco A. L. A mutation of the mu transmembrane that disrupts endoplasmic reticulum retention. Effects on association with accessory proteins and signal transduction. J Immunol. 1994 May 1;152(9):4397–4406. [PubMed] [Google Scholar]
  28. Tony H. P., Phillips N. E., Parker D. C. Role of membrane immunoglobulin (Ig) crosslinking in membrane Ig-mediated, major histocompatibility-restricted T cell-B cell cooperation. J Exp Med. 1985 Nov 1;162(5):1695–1708. doi: 10.1084/jem.162.5.1695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Watts C., Davidson H. W. Endocytosis and recycling of specific antigen by human B cell lines. EMBO J. 1988 Jul;7(7):1937–1945. doi: 10.1002/j.1460-2075.1988.tb03031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. West M. A., Lucocq J. M., Watts C. Antigen processing and class II MHC peptide-loading compartments in human B-lymphoblastoid cells. Nature. 1994 May 12;369(6476):147–151. doi: 10.1038/369147a0. [DOI] [PubMed] [Google Scholar]
  31. Wienands J., Reth M. Glycosyl-phosphatidylinositol linkage as a mechanism for cell-surface expression of immunoglobulin D. Nature. 1992 Mar 19;356(6366):246–248. doi: 10.1038/356246a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES