Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Jun 1;181(6):2077–2084. doi: 10.1084/jem.181.6.2077

Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signaling

PMCID: PMC2192043  PMID: 7539038

Abstract

Recent data implicating loss of PTP1C tyrosine phosphatase activity in the genesis of the multiple hemopoietic cell defects found in systemic autoimmune/immunodeficient motheaten (me) and viable motheaten (mev) mice suggest that PTP1C plays an important role in modulating intracellular signaling events regulating cell activation and differentiation. To begin elucidating the role for this cytosolic phosphatase in lymphoid cell signal transduction, we have examined early signaling events and mitogenic responses induced by B cell antigen receptor (BCR) ligation in me and mev splenic B cells and in CD5+ CH12 lymphoma cells, which represent the lymphoid population amplified in motheaten mice. Despite their lack of functional PTP1C, me and mev B cells proliferated normally in response to LPS. However, compared with wild-type B cells, cells from the mutant mice were hyperresponsive to normally submitogenic concentrations of F(ab')2 anti- Ig antibody, and they exhibited reduced susceptibility to the inhibitory effects of Fc gamma IIRB cross-linking on BCR-induced proliferation. Additional studies of unstimulated CH12 and wild-type splenic B cells revealed the constitutive association of PTP1C with the resting BCR complex, as evidenced by coprecipitation of PTP1C protein and phosphatase activity with BCR components and the depletion of BCR- associated tyrosine phosphatase activity by anti-PTP1C antibodies. These results suggest a role for PTP1C in regulating the tyrosine phosphorylation state of the resting BCR complex components, a hypothesis supported by the observation that PTP1C specifically induces dephosphorylation of a 35-kD BCR-associated protein likely representing Ig-alpha. In contrast, whereas membrane Ig cross-linking was associated with an increase in the tyrosine phosphorylation of PTP1C and an approximately 140-kD coprecipitated protein, PTP1C was no longer detected in the BCR complex after receptor engagement, suggesting that PTP1C dissociates from the activated receptor complex. Together these results suggest a critical role for PTP1C in modulating BCR signaling capacity, and they indicate that the PTP1C influence on B cell signaling is likely to be realized in both resting and activated cells.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold L. W., LoCascio N. J., Lutz P. M., Pennell C. A., Klapper D., Haughton G. Antigen-induced lymphomagenesis: identification of a murine B cell lymphoma with known antigen specificity. J Immunol. 1983 Oct;131(4):2064–2068. [PubMed] [Google Scholar]
  2. Bignon J. S., Siminovitch K. A. Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. Clin Immunol Immunopathol. 1994 Nov;73(2):168–179. doi: 10.1006/clin.1994.1185. [DOI] [PubMed] [Google Scholar]
  3. Burkhardt A. L., Brunswick M., Bolen J. B., Mond J. J. Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7410–7414. doi: 10.1073/pnas.88.16.7410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cambier J. C., Pleiman C. M., Clark M. R. Signal transduction by the B cell antigen receptor and its coreceptors. Annu Rev Immunol. 1994;12:457–486. doi: 10.1146/annurev.iy.12.040194.002325. [DOI] [PubMed] [Google Scholar]
  5. Campbell M. A., Sefton B. M. Protein tyrosine phosphorylation is induced in murine B lymphocytes in response to stimulation with anti-immunoglobulin. EMBO J. 1990 Jul;9(7):2125–2131. doi: 10.1002/j.1460-2075.1990.tb07381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen J. Z., Stall A. M., Herzenberg L. A., Herzenberg L. A. Differences in glycoprotein complexes associated with IgM and IgD on normal murine B cells potentially enable transduction of different signals. EMBO J. 1990 Jul;9(7):2117–2124. doi: 10.1002/j.1460-2075.1990.tb07380.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davidson W. F., Morse H. C., 3rd, Sharrow S. O., Chused T. M. Phenotypic and functional effects of the motheaten gene on murine B and T lymphocytes. J Immunol. 1979 Mar;122(3):884–891. [PubMed] [Google Scholar]
  8. Feng G. S., Hui C. C., Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science. 1993 Mar 12;259(5101):1607–1611. doi: 10.1126/science.8096088. [DOI] [PubMed] [Google Scholar]
  9. Gold M. R., Law D. A., DeFranco A. L. Stimulation of protein tyrosine phosphorylation by the B-lymphocyte antigen receptor. Nature. 1990 Jun 28;345(6278):810–813. doi: 10.1038/345810a0. [DOI] [PubMed] [Google Scholar]
  10. Gold M. R., Matsuuchi L., Kelly R. B., DeFranco A. L. Tyrosine phosphorylation of components of the B-cell antigen receptors following receptor crosslinking. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3436–3440. doi: 10.1073/pnas.88.8.3436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green M. C., Shultz L. D. Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered. 1975 Sep-Oct;66(5):250–258. doi: 10.1093/oxfordjournals.jhered.a108625. [DOI] [PubMed] [Google Scholar]
  12. Greiner D. L., Goldschneider I., Komschlies K. L., Medlock E. S., Bollum F. J., Schultz L. Defective lymphopoiesis in bone marrow of motheaten (me/me) and viable motheaten (mev/mev) mutant mice. I. Analysis of development of prothymocytes, early B lineage cells, and terminal deoxynucleotidyl transferase-positive cells. J Exp Med. 1986 Oct 1;164(4):1129–1144. doi: 10.1084/jem.164.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayashi S., Witte P. L., Shultz L. D., Kincade P. W. Lymphohemopoiesis in culture is prevented by interaction with adherent bone marrow cells from mutant viable motheaten mice. J Immunol. 1988 Apr 1;140(7):2139–2147. [PubMed] [Google Scholar]
  14. Herzenberg L. A., Stall A. M., Lalor P. A., Sidman C., Moore W. A., Parks D. R., Herzenberg L. A. The Ly-1 B cell lineage. Immunol Rev. 1986 Oct;93:81–102. doi: 10.1111/j.1600-065x.1986.tb01503.x. [DOI] [PubMed] [Google Scholar]
  15. Hutchcroft J. E., Harrison M. L., Geahlen R. L. Association of the 72-kDa protein-tyrosine kinase PTK72 with the B cell antigen receptor. J Biol Chem. 1992 Apr 25;267(12):8613–8619. [PubMed] [Google Scholar]
  16. Ihle J. N., Witthuhn B. A., Quelle F. W., Silvennoinen O., Tang B., Yi T. Protein tyrosine phosphorylation in the regulation of hematopoiesis by receptors of the cytokine-receptor superfamily. Blood Cells. 1994;20(1):65–82. [PubMed] [Google Scholar]
  17. Kolber D. L., Shultz L. D., Rothstein T. L. Phorbol ester responsiveness of murine Ly-1-lineage B cells from normal and viable motheaten mutant mice. Eur J Immunol. 1991 Mar;21(3):721–729. doi: 10.1002/eji.1830210327. [DOI] [PubMed] [Google Scholar]
  18. Kozlowski M., Mlinaric-Rascan I., Feng G. S., Shen R., Pawson T., Siminovitch K. A. Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med. 1993 Dec 1;178(6):2157–2163. doi: 10.1084/jem.178.6.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Law C. L., Sidorenko S. P., Clark E. A. Regulation of lymphocyte activation by the cell-surface molecule CD22. Immunol Today. 1994 Sep;15(9):442–449. doi: 10.1016/0167-5699(94)90275-5. [DOI] [PubMed] [Google Scholar]
  20. Law D. A., Chan V. W., Datta S. K., DeFranco A. L. B-cell antigen receptor motifs have redundant signalling capabilities and bind the tyrosine kinases PTK72, Lyn and Fyn. Curr Biol. 1993 Oct 1;3(10):645–657. doi: 10.1016/0960-9822(93)90062-s. [DOI] [PubMed] [Google Scholar]
  21. Mlinaric-Rascan I., Asa S. L., Siminovitch K. A. Increased expression of the stefin A cysteine proteinase inhibitor occurs in the myelomonocytic cell-infiltrated tissues of autoimmune motheaten mice. Am J Pathol. 1994 Oct;145(4):902–912. [PMC free article] [PubMed] [Google Scholar]
  22. Morris D. L., Rothstein T. L. Decreased surface IgM receptor-mediated activation of phospholipase C gamma 2 in B-1 lymphocytes. Int Immunol. 1994 Jul;6(7):1011–1016. doi: 10.1093/intimm/6.7.1011. [DOI] [PubMed] [Google Scholar]
  23. Muta T., Kurosaki T., Misulovin Z., Sanchez M., Nussenzweig M. C., Ravetch J. V. A 13-amino-acid motif in the cytoplasmic domain of Fc gamma RIIB modulates B-cell receptor signalling. Nature. 1994 Mar 3;368(6466):70–73. doi: 10.1038/368070a0. [DOI] [PubMed] [Google Scholar]
  24. Pleiman C. M., Abrams C., Gauen L. T., Bedzyk W., Jongstra J., Shaw A. S., Cambier J. C. Distinct p53/56lyn and p59fyn domains associate with nonphosphorylated and phosphorylated Ig-alpha. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4268–4272. doi: 10.1073/pnas.91.10.4268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Plutzky J., Neel B. G., Rosenberg R. D. Isolation of a src homology 2-containing tyrosine phosphatase. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1123–1127. doi: 10.1073/pnas.89.3.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shen S. H., Bastien L., Posner B. I., Chrétien P. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature. 1991 Aug 22;352(6337):736–739. doi: 10.1038/352736a0. [DOI] [PubMed] [Google Scholar]
  27. Shultz L. D., Coman D. R., Bailey C. L., Beamer W. G., Sidman C. L. "Viable motheaten," a new allele at the motheaten locus. I. Pathology. Am J Pathol. 1984 Aug;116(2):179–192. [PMC free article] [PubMed] [Google Scholar]
  28. Shultz L. D., Green M. C. Motheaten, an immunodeficient mutant of the mouse. II. Depressed immune competence and elevated serum immunoglobulins. J Immunol. 1976 Apr;116(4):936–943. [PubMed] [Google Scholar]
  29. Shultz L. D., Schweitzer P. A., Rajan T. V., Yi T., Ihle J. N., Matthews R. J., Thomas M. L., Beier D. R. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell. 1993 Jul 2;73(7):1445–1454. doi: 10.1016/0092-8674(93)90369-2. [DOI] [PubMed] [Google Scholar]
  30. Sidman C. L., Marshall J. D., Masiello N. C., Roths J. B., Shultz L. D. Novel B-cell maturation factor from spontaneously autoimmune viable motheaten mice. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7199–7202. doi: 10.1073/pnas.81.22.7199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sidman C. L., Shultz L. D., Hardy R. R., Hayakawa K., Herzenberg L. A. Production of immunoglobulin isotypes by Ly-1+ B cells in viable motheaten and normal mice. Science. 1986 Jun 13;232(4756):1423–1425. doi: 10.1126/science.3487115. [DOI] [PubMed] [Google Scholar]
  32. Sidman C. L., Shultz L. D., Unanue E. R. The mouse mutant "motheaten." II. Functional studies of the immune system. J Immunol. 1978 Dec;121(6):2399–2404. [PubMed] [Google Scholar]
  33. Tsui H. W., Siminovitch K. A., de Souza L., Tsui F. W. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet. 1993 Jun;4(2):124–129. doi: 10.1038/ng0693-124. [DOI] [PubMed] [Google Scholar]
  34. Uchida T., Matozaki T., Matsuda K., Suzuki T., Matozaki S., Nakano O., Wada K., Konda Y., Sakamoto C., Kasuga M. Phorbol ester stimulates the activity of a protein tyrosine phosphatase containing SH2 domains (PTP1C) in HL-60 leukemia cells by increasing gene expression. J Biol Chem. 1993 Jun 5;268(16):11845–11850. [PubMed] [Google Scholar]
  35. Van Zant G., Shultz L. Hematologic abnormalities of the immunodeficient mouse mutant, viable motheaten (mev). Exp Hematol. 1989 Feb;17(2):81–87. [PubMed] [Google Scholar]
  36. Yamanashi Y., Fukui Y., Wongsasant B., Kinoshita Y., Ichimori Y., Toyoshima K., Yamamoto T. Activation of Src-like protein-tyrosine kinase Lyn and its association with phosphatidylinositol 3-kinase upon B-cell antigen receptor-mediated signaling. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1118–1122. doi: 10.1073/pnas.89.3.1118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yeung Y. G., Berg K. L., Pixley F. J., Angeletti R. H., Stanley E. R. Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1. J Biol Chem. 1992 Nov 25;267(33):23447–23450. [PubMed] [Google Scholar]
  38. Yi T. L., Cleveland J. L., Ihle J. N. Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13. Mol Cell Biol. 1992 Feb;12(2):836–846. doi: 10.1128/mcb.12.2.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yi T., Ihle J. N. Association of hematopoietic cell phosphatase with c-Kit after stimulation with c-Kit ligand. Mol Cell Biol. 1993 Jun;13(6):3350–3358. doi: 10.1128/mcb.13.6.3350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yi T., Mui A. L., Krystal G., Ihle J. N. Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol Cell Biol. 1993 Dec;13(12):7577–7586. doi: 10.1128/mcb.13.12.7577. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES