Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Jun 1;181(6):1985–1995. doi: 10.1084/jem.181.6.1985

Follicular dendritic cells inhibit apoptosis in human B lymphocytes by a rapid and irreversible blockade of preexisting endonuclease

PMCID: PMC2192045  PMID: 7759994

Abstract

During germinal center reactions, a minority of B lymphocytes are selected after successful binding to follicular dendritic cells (FDCs). The majority of the B cells, however, die by apoptosis. One of the characteristics of apoptosis is rapid fragmentation of DNA by an endogenous endonuclease. The regulation of apoptosis and endonuclease activity in germinal center (GC) B cells is largely unknown. In this study we have investigated the induction and inhibition of endonuclease activity in GC B cells. We also investigated the role of FDCs, surface Ig (sIg), sIgM, CD21, CD22 CD40, and intracellular Zn2+ in the regulation of endonuclease activity. We have found that DNA fragmentation in GC B cells is caused by a preexisting endonuclease very similar to NUC-18 (an 18-kD endonuclease identified in rat thymocytes). Endonuclease activity in GC B cells appears to be rapidly and irreversibly blocked after interaction with FDCs, but not after cross-linkage of sIg, sIgM, CD21, CD22, or CD40. Addition of soluble CD40-human IgM fusion protein (sCD40) to FDC-B cell cultures also did not interfere with FDC-mediated B cell rescue. Chelation of intracellular Zn2+ during FDC-B cell cultures resulted in abrogated B cell rescue. These data suggest that FDCs inhibit apoptosis in GC B cells by a rapid inactivation of preexisting endonuclease using a mechanism distinct from CD40 ligation.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arends M. J., Morris R. G., Wyllie A. H. Apoptosis. The role of the endonuclease. Am J Pathol. 1990 Mar;136(3):593–608. [PMC free article] [PubMed] [Google Scholar]
  2. Banchereau J., de Paoli P., Vallé A., Garcia E., Rousset F. Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science. 1991 Jan 4;251(4989):70–72. doi: 10.1126/science.1702555. [DOI] [PubMed] [Google Scholar]
  3. Bonnefoy J. Y., Henchoz S., Hardie D., Holder M. J., Gordon J. A subset of anti-CD21 antibodies promote the rescue of germinal center B cells from apoptosis. Eur J Immunol. 1993 Apr;23(4):969–972. doi: 10.1002/eji.1830230432. [DOI] [PubMed] [Google Scholar]
  4. Clark E. A., Ledbetter J. A. Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4494–4498. doi: 10.1073/pnas.83.12.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen J. J., Duke R. C., Fadok V. A., Sellins K. S. Apoptosis and programmed cell death in immunity. Annu Rev Immunol. 1992;10:267–293. doi: 10.1146/annurev.iy.10.040192.001411. [DOI] [PubMed] [Google Scholar]
  6. Cohen J. J., Duke R. C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984 Jan;132(1):38–42. [PubMed] [Google Scholar]
  7. Cohen J. J. Programmed cell death in the immune system. Adv Immunol. 1991;50:55–85. doi: 10.1016/s0065-2776(08)60822-6. [DOI] [PubMed] [Google Scholar]
  8. Cotter T. G., Glynn J. M., Echeverri F., Green D. R. The induction of apoptosis by chemotherapeutic agents occurs in all phases of the cell cycle. Anticancer Res. 1992 May-Jun;12(3):773–779. [PubMed] [Google Scholar]
  9. Cotter T. G., Lennon S. V., Glynn J. G., Martin S. J. Cell death via apoptosis and its relationship to growth, development and differentiation of both tumour and normal cells. Anticancer Res. 1990 Sep-Oct;10(5A):1153–1159. [PubMed] [Google Scholar]
  10. Dang L. H., Rock K. L. Stimulation of B lymphocytes through surface Ig receptors induces LFA-1 and ICAM-1-dependent adhesion. J Immunol. 1991 May 15;146(10):3273–3279. [PubMed] [Google Scholar]
  11. Duke R. C., Cohen J. J. IL-2 addiction: withdrawal of growth factor activates a suicide program in dependent T cells. Lymphokine Res. 1986 Fall;5(4):289–299. [PubMed] [Google Scholar]
  12. Falkoff R. M., Peters M., Fauci A. S. T cell enrichment and depletion of human peripheral blood mononuclear cell preparations. Unexpected findings in the study of the functional activities of the separated populations. J Immunol Methods. 1982;50(1):39–49. doi: 10.1016/0022-1759(82)90302-7. [DOI] [PubMed] [Google Scholar]
  13. Gaido M. L., Cidlowski J. A. Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. J Biol Chem. 1991 Oct 5;266(28):18580–18585. [PubMed] [Google Scholar]
  14. Hedman H., Lundgren E. Regulation of LFA-1 avidity in human B cells. Requirements for dephosphorylation events for high avidity ICAM-1 binding. J Immunol. 1992 Oct 1;149(7):2295–2299. [PubMed] [Google Scholar]
  15. Iseki R., Mukai M., Iwata M. Regulation of T lymphocyte apoptosis. Signals for the antagonism between activation- and glucocorticoid-induced death. J Immunol. 1991 Dec 15;147(12):4286–4292. [PubMed] [Google Scholar]
  16. Kerr J. F., Searle J. Deletion of cells by apoptosis during castration-induced involution of the rat prostate. Virchows Arch B Cell Pathol. 1973 Jun 25;13(2):87–102. doi: 10.1007/BF02889300. [DOI] [PubMed] [Google Scholar]
  17. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kizaki H., Tadakuma T., Odaka C., Muramatsu J., Ishimura Y. Activation of a suicide process of thymocytes through DNA fragmentation by calcium ionophores and phorbol esters. J Immunol. 1989 Sep 15;143(6):1790–1794. [PubMed] [Google Scholar]
  19. Knox K. A., Johnson G. D., Gordon J. A study of protein kinase C isozyme distribution in relation to Bcl-2 expression during apoptosis of epithelial cells in vivo. Exp Cell Res. 1993 Jul;207(1):68–73. doi: 10.1006/excr.1993.1164. [DOI] [PubMed] [Google Scholar]
  20. Koopman G., Keehnen R. M., Lindhout E., Newman W., Shimizu Y., van Seventer G. A., de Groot C., Pals S. T. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol. 1994 Apr 15;152(8):3760–3767. [PubMed] [Google Scholar]
  21. Krammer P. H., Behrmann I., Daniel P., Dhein J., Debatin K. M. Regulation of apoptosis in the immune system. Curr Opin Immunol. 1994 Apr;6(2):279–289. doi: 10.1016/0952-7915(94)90102-3. [DOI] [PubMed] [Google Scholar]
  22. Kusher D. I., Ware C. F., Gooding L. R. Induction of the heat shock response protects cells from lysis by tumor necrosis factor. J Immunol. 1990 Nov 1;145(9):2925–2931. [PubMed] [Google Scholar]
  23. Law C. L., Wörmann B., LeBien T. W. Analysis of expression and function of CD40 on normal and leukemic human B cell precursors. Leukemia. 1990 Nov;4(11):732–738. [PubMed] [Google Scholar]
  24. Lennon S. V., Cotter T. G. The regulatory role of zinc in apoptosis in human tumour cell lines. Biochem Soc Trans. 1992 Feb;20(1):78S–78S. doi: 10.1042/bst020078s. [DOI] [PubMed] [Google Scholar]
  25. Lindhout E., Lakeman A., Mevissen M. L., de Groot C. Functionally active Epstein-Barr virus-transformed follicular dendritic cell-like cell lines. J Exp Med. 1994 Apr 1;179(4):1173–1184. doi: 10.1084/jem.179.4.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lindhout E., Mevissen M. L., Kwekkeboom J., Tager J. M., de Groot C. Direct evidence that human follicular dendritic cells (FDC) rescue germinal centre B cells from death by apoptosis. Clin Exp Immunol. 1993 Feb;91(2):330–336. doi: 10.1111/j.1365-2249.1993.tb05904.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liu Y. J., Cairns J. A., Holder M. J., Abbot S. D., Jansen K. U., Bonnefoy J. Y., Gordon J., MacLennan I. C. Recombinant 25-kDa CD23 and interleukin 1 alpha promote the survival of germinal center B cells: evidence for bifurcation in the development of centrocytes rescued from apoptosis. Eur J Immunol. 1991 May;21(5):1107–1114. doi: 10.1002/eji.1830210504. [DOI] [PubMed] [Google Scholar]
  28. Liu Y. J., Joshua D. E., Williams G. T., Smith C. A., Gordon J., MacLennan I. C. Mechanism of antigen-driven selection in germinal centres. Nature. 1989 Dec 21;342(6252):929–931. doi: 10.1038/342929a0. [DOI] [PubMed] [Google Scholar]
  29. Martin S. J., Lennon S. V., Bonham A. M., Cotter T. G. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J Immunol. 1990 Sep 15;145(6):1859–1867. [PubMed] [Google Scholar]
  30. Martin S. J., Mazdai G., Strain J. J., Cotter T. G., Hannigan B. M. Programmed cell death (apoptosis) in lymphoid and myeloid cell lines during zinc deficiency. Clin Exp Immunol. 1991 Feb;83(2):338–343. doi: 10.1111/j.1365-2249.1991.tb05639.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matsubara K., Kubota M., Adachi S., Kuwakado K., Hirota H., Wakazono Y., Akiyama Y., Mikawa H. Different mode of cell death induced by calcium ionophore in human leukemia cell lines: possible role of constitutive endonuclease. Exp Cell Res. 1994 Jan;210(1):19–25. doi: 10.1006/excr.1994.1003. [DOI] [PubMed] [Google Scholar]
  32. McCabe M. J., Jr, Jiang S. A., Orrenius S. Chelation of intracellular zinc triggers apoptosis in mature thymocytes. Lab Invest. 1993 Jul;69(1):101–110. [PubMed] [Google Scholar]
  33. McCall C. A., Cohen J. J. Programmed cell death in terminally differentiating keratinocytes: role of endogenous endonuclease. J Invest Dermatol. 1991 Jul;97(1):111–114. doi: 10.1111/1523-1747.ep12478519. [DOI] [PubMed] [Google Scholar]
  34. Mosher K. M., Young D. A., Munck A. Evidence for irreversible, actinomycin D-sensitive, and temperature-sensitive steps following binding of cortisol to glucocorticoid receptors and preceding effects on glucose metabolism in rat thymus cells. J Biol Chem. 1971 Feb 10;246(3):654–659. [PubMed] [Google Scholar]
  35. Nieto M. A., González A., Gambón F., Díaz-Espada F., López-Rivas A. Apoptosis in human thymocytes after treatment with glucocorticoids. Clin Exp Immunol. 1992 May;88(2):341–344. doi: 10.1111/j.1365-2249.1992.tb03084.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nieto M. A., López-Rivas A. IL-2 protects T lymphocytes from glucocorticoid-induced DNA fragmentation and cell death. J Immunol. 1989 Dec 15;143(12):4166–4170. [PubMed] [Google Scholar]
  37. Parmentier H. K., van der Linden J. A., Krijnen J., van Wichen D. F., Rademakers L. H., Bloem A. C., Schuurman H. J. Human follicular dendritic cells: isolation and characteristics in situ and in suspension. Scand J Immunol. 1991 Apr;33(4):441–452. doi: 10.1111/j.1365-3083.1991.tb01793.x. [DOI] [PubMed] [Google Scholar]
  38. Paulie S., Rosén A., Ehlin-Henriksson B., Braesch-Andersen S., Jakobson E., Koho H., Perlmann P. The human B lymphocyte and carcinoma antigen, CDw40, is a phosphoprotein involved in growth signal transduction. J Immunol. 1989 Jan 15;142(2):590–595. [PubMed] [Google Scholar]
  39. Peitsch M. C., Mannherz H. G., Tschopp J. The apoptosis endonucleases: cleaning up after cell death? Trends Cell Biol. 1994 Feb;4(2):37–41. doi: 10.1016/0962-8924(94)90002-7. [DOI] [PubMed] [Google Scholar]
  40. Ribeiro J. M., Carson D. A. Ca2+/Mg(2+)-dependent endonuclease from human spleen: purification, properties, and role in apoptosis. Biochemistry. 1993 Sep 7;32(35):9129–9136. doi: 10.1021/bi00086a018. [DOI] [PubMed] [Google Scholar]
  41. Rotello R. J., Hocker M. B., Gerschenson L. E. Biochemical evidence for programmed cell death in rabbit uterine epithelium. Am J Pathol. 1989 Mar;134(3):491–495. [PMC free article] [PubMed] [Google Scholar]
  42. Sandow B. A., West N. B., Norman R. L., Brenner R. M. Hormonal control of apoptosis in hamster uterine luminal epithelium. Am J Anat. 1979 Sep;156(1):15–35. doi: 10.1002/aja.1001560103. [DOI] [PubMed] [Google Scholar]
  43. Savill J. S., Wyllie A. H., Henson J. E., Walport M. J., Henson P. M., Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989 Mar;83(3):865–875. doi: 10.1172/JCI113970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schnizlein C. T., Kosco M. H., Szakal A. K., Tew J. G. Follicular dendritic cells in suspension: identification, enrichment, and initial characterization indicating immune complex trapping and lack of adherence and phagocytic activity. J Immunol. 1985 Mar;134(3):1360–1368. [PubMed] [Google Scholar]
  45. Schwartzman R. A., Cidlowski J. A. Mechanism of tissue-specific induction of internucleosomal deoxyribonucleic acid cleavage activity and apoptosis by glucocorticoids. Endocrinology. 1993 Aug;133(2):591–599. doi: 10.1210/endo.133.2.8393769. [DOI] [PubMed] [Google Scholar]
  46. Searle J., Kerr J. F., Bishop C. J. Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu. 1982;17(Pt 2):229–259. [PubMed] [Google Scholar]
  47. Shi Y. F., Sahai B. M., Green D. R. Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. Nature. 1989 Jun 22;339(6226):625–626. doi: 10.1038/339625a0. [DOI] [PubMed] [Google Scholar]
  48. Smith C. A., Williams G. T., Kingston R., Jenkinson E. J., Owen J. J. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature. 1989 Jan 12;337(6203):181–184. doi: 10.1038/337181a0. [DOI] [PubMed] [Google Scholar]
  49. Strätling W. H., Grade C., Hörz W. Ca/Mg-dependent endonuclease from porcine liver. Purification, properties, and sequence specificity. J Biol Chem. 1984 May 10;259(9):5893–5898. [PubMed] [Google Scholar]
  50. Takano Y. S., Harmon B. V., Kerr J. F. Apoptosis induced by mild hyperthermia in human and murine tumour cell lines: a study using electron microscopy and DNA gel electrophoresis. J Pathol. 1991 Apr;163(4):329–336. doi: 10.1002/path.1711630410. [DOI] [PubMed] [Google Scholar]
  51. Treves S., Trentini P. L., Ascanelli M., Bucci G., Di Virgilio F. Apoptosis is dependent on intracellular zinc and independent of intracellular calcium in lymphocytes. Exp Cell Res. 1994 Apr;211(2):339–343. doi: 10.1006/excr.1994.1096. [DOI] [PubMed] [Google Scholar]
  52. Ucker D. S., Ashwell J. D., Nickas G. Activation-driven T cell death. I. Requirements for de novo transcription and translation and association with genome fragmentation. J Immunol. 1989 Dec 1;143(11):3461–3469. [PubMed] [Google Scholar]
  53. Vanderbilt J. N., Bloom K. S., Anderson J. N. Endogenous nuclease. Properties and effects on transcribed genes in chromatin. J Biol Chem. 1982 Nov 10;257(21):13009–13017. [PubMed] [Google Scholar]
  54. Waring P. DNA fragmentation induced in macrophages by gliotoxin does not require protein synthesis and is preceded by raised inositol triphosphate levels. J Biol Chem. 1990 Aug 25;265(24):14476–14480. [PubMed] [Google Scholar]
  55. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  56. Wyllie A. H., Morris R. G., Smith A. L., Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol. 1984 Jan;142(1):67–77. doi: 10.1002/path.1711420112. [DOI] [PubMed] [Google Scholar]
  57. Zalewski P. D., Forbes I. J., Betts W. H. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J. 1993 Dec 1;296(Pt 2):403–408. doi: 10.1042/bj2960403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zupo S., Rugari E., Dono M., Taborelli G., Malavasi F., Ferrarini M. CD38 signaling by agonistic monoclonal antibody prevents apoptosis of human germinal center B cells. Eur J Immunol. 1994 May;24(5):1218–1222. doi: 10.1002/eji.1830240532. [DOI] [PubMed] [Google Scholar]
  59. de Boer M., Conroy L., Min H. Y., Kwekkeboom J. Generation of monoclonal antibodies to human lymphocyte cell surface antigens using insect cells expressing recombinant proteins. J Immunol Methods. 1992 Jul 31;152(1):15–23. doi: 10.1016/0022-1759(92)90084-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES