Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Jul 1;182(1):15–20. doi: 10.1084/jem.182.1.15

Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes

PMCID: PMC2192085  PMID: 7790815

Abstract

Adherence of Plasmodium falciparum-infected erythrocytes to cerebral postcapillary venular endothelium is believed to be a critical step in the development of cerebral malaria. Some of the possible receptors mediating adherence have been identified, but the process of adherence in vivo is poorly understood. We investigated the role of carbohydrate ligands in adherence, and we identified chondroitin sulfate (CS) as a specific receptor for P. falciparum-infected erythrocytes. Parasitized cells bound to Chinese hamster ovary (CHO) cells and C32 melanoma cells in a chondroitin sulfate-dependent manner, whereas glycosylation mutants lacking chondroitin sulfate A (CSA) supported little or no binding. Chondroitinase treatment of wild-type CHO cells reduced binding by up to 90%. Soluble CSA inhibited binding to CHO cells by 99.2 +/- 0.2% at 10 mg/ml and by 72.5 +/- 3.8% at 1 mg/ml, whereas a range of other glycosaminoglycans such as heparan sulfate had no effect. Parasite lines selected for increased binding to CHO cells and most patient isolates bound specifically to immobilized CSA. We conclude that P. falciparum can express or expose proteins at the surface of the infected erythrocyte that mediate specific binding to CSA. This mechanism of adherence may contribute to the pathogenesis of P. falciparum malaria, but has wider implications as an example of an infectious agent with the capacity to bind specifically to cell- associated or immobilized CS.

Full Text

The Full Text of this article is available as a PDF (548.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa M., Iseki M., Barnwell J. W., Taylor D., Oo M. M., Howard R. J. The pathology of human cerebral malaria. Am J Trop Med Hyg. 1990 Aug;43(2 Pt 2):30–37. doi: 10.4269/ajtmh.1990.43.30. [DOI] [PubMed] [Google Scholar]
  2. Berendt A. R., Simmons D. L., Tansey J., Newbold C. I., Marsh K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature. 1989 Sep 7;341(6237):57–59. doi: 10.1038/341057a0. [DOI] [PubMed] [Google Scholar]
  3. Biggs B. A., Goozé L., Wycherley K., Wollish W., Southwell B., Leech J. H., Brown G. V. Antigenic variation in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9171–9174. doi: 10.1073/pnas.88.20.9171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bumol T. F., Walker L. E., Reisfeld R. A. Biosynthetic studies of proteoglycans in human melanoma cells with a monoclonal antibody to a core glycoprotein of chondroitin sulfate proteoglycans. J Biol Chem. 1984 Oct 25;259(20):12733–12741. [PubMed] [Google Scholar]
  5. Cerami C., Frevert U., Sinnis P., Takacs B., Clavijo P., Santos M. J., Nussenzweig V. The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell. 1992 Sep 18;70(6):1021–1033. doi: 10.1016/0092-8674(92)90251-7. [DOI] [PubMed] [Google Scholar]
  6. Chaiyaroj S. C., Coppel R. L., Novakovic S., Brown G. V. Multiple ligands for cytoadherence can be present simultaneously on the surface of Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10805–10808. doi: 10.1073/pnas.91.23.10805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crandall I., Land K. M., Sherman I. W. Plasmodium falciparum: pfalhesin and CD36 form an adhesin/receptor pair that is responsible for the pH-dependent portion of cytoadherence/sequestration. Exp Parasitol. 1994 Mar;78(2):203–209. doi: 10.1006/expr.1994.1020. [DOI] [PubMed] [Google Scholar]
  8. Esko J. D. Genetic analysis of proteoglycan structure, function and metabolism. Curr Opin Cell Biol. 1991 Oct;3(5):805–816. doi: 10.1016/0955-0674(91)90054-3. [DOI] [PubMed] [Google Scholar]
  9. Esko J. D., Stewart T. E., Taylor W. H. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A. 1985 May;82(10):3197–3201. doi: 10.1073/pnas.82.10.3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frevert U., Sinnis P., Cerami C., Shreffler W., Takacs B., Nussenzweig V. Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J Exp Med. 1993 May 1;177(5):1287–1298. doi: 10.1084/jem.177.5.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerlitz B., Hassell T., Vlahos C. J., Parkinson J. F., Bang N. U., Grinnell B. W. Identification of the predominant glycosaminoglycan-attachment site in soluble recombinant human thrombomodulin: potential regulation of functionality by glycosyltransferase competition for serine474. Biochem J. 1993 Oct 1;295(Pt 1):131–140. doi: 10.1042/bj2950131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hasler T., Albrecht G. R., Van Schravendijk M. R., Aguiar J. C., Morehead K. E., Pasloske B. L., Ma C., Barnwell J. W., Greenwood B., Howard R. J. An improved microassay for Plasmodium falciparum cytoadherence using stable transformants of Chinese hamster ovary cells expressing CD36 or intercellular adhesion molecule-1. Am J Trop Med Hyg. 1993 Mar;48(3):332–347. doi: 10.4269/ajtmh.1993.48.332. [DOI] [PubMed] [Google Scholar]
  13. Ihrcke N. S., Wrenshall L. E., Lindman B. J., Platt J. L. Role of heparan sulfate in immune system-blood vessel interactions. Immunol Today. 1993 Oct;14(10):500–505. doi: 10.1016/0167-5699(93)90265-M. [DOI] [PubMed] [Google Scholar]
  14. Johnson J. K., Swerlick R. A., Grady K. K., Millet P., Wick T. M. Cytoadherence of Plasmodium falciparum-infected erythrocytes to microvascular endothelium is regulatable by cytokines and phorbol ester. J Infect Dis. 1993 Mar;167(3):698–703. doi: 10.1093/infdis/167.3.698. [DOI] [PubMed] [Google Scholar]
  15. Karamanos N. K., Syrokou A., Vanky P., Nurminen M., Hjerpe A. Determination of 24 variously sulfated galactosaminoglycan- and hyaluronan-derived disaccharides by high-performance liquid chromatography. Anal Biochem. 1994 Aug 15;221(1):189–199. doi: 10.1006/abio.1994.1396. [DOI] [PubMed] [Google Scholar]
  16. Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
  17. Leech J. H., Barnwell J. W., Miller L. H., Howard R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med. 1984 Jun 1;159(6):1567–1575. doi: 10.1084/jem.159.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin J. H., McLean K., Morser J., Young T. A., Wydro R. M., Andrews W. H., Light D. R. Modulation of glycosaminoglycan addition in naturally expressed and recombinant human thrombomodulin. J Biol Chem. 1994 Oct 7;269(40):25021–25030. [PubMed] [Google Scholar]
  19. Neyts J., Snoeck R., Schols D., Balzarini J., Esko J. D., Van Schepdael A., De Clercq E. Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology. 1992 Jul;189(1):48–58. doi: 10.1016/0042-6822(92)90680-n. [DOI] [PubMed] [Google Scholar]
  20. Ockenhouse C. F., Tandon N. N., Magowan C., Jamieson G. A., Chulay J. D. Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science. 1989 Mar 17;243(4897):1469–1471. doi: 10.1126/science.2467377. [DOI] [PubMed] [Google Scholar]
  21. Ockenhouse C. F., Tegoshi T., Maeno Y., Benjamin C., Ho M., Kan K. E., Thway Y., Win K., Aikawa M., Lobb R. R. Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med. 1992 Oct 1;176(4):1183–1189. doi: 10.1084/jem.176.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ortega-Barria E., Pereira M. E. A novel T. cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell. 1991 Oct 18;67(2):411–421. doi: 10.1016/0092-8674(91)90192-2. [DOI] [PubMed] [Google Scholar]
  23. Pancake S. J., Hollingdale M. R. Plasmodium berghei: reaction of sporozoites with chemically and enzymatically modified hepatoma cells. Exp Parasitol. 1986 Aug;62(1):120–126. doi: 10.1016/0014-4894(86)90015-9. [DOI] [PubMed] [Google Scholar]
  24. Roberts D. D., Sherwood J. A., Spitalnik S. L., Panton L. J., Howard R. J., Dixit V. M., Frazier W. A., Miller L. H., Ginsburg V. Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature. 1985 Nov 7;318(6041):64–66. doi: 10.1038/318064a0. [DOI] [PubMed] [Google Scholar]
  25. Rogerson S. J., Reeder J. C., al-Yaman F., Brown G. V. Sulfated glycoconjugates as disrupters of Plasmodium falciparum erythrocyte rosettes. Am J Trop Med Hyg. 1994 Aug;51(2):198–203. doi: 10.4269/ajtmh.1994.51.198. [DOI] [PubMed] [Google Scholar]
  26. Schmidt J. A., Udeinya I. J., Leech J. H., Hay R. J., Aikawa M., Barnwell J., Green I., Miller L. H. Plasmodium falciparum malaria. An amelanotic melanoma cell line bears receptors for the knob ligand on infected erythrocytes. J Clin Invest. 1982 Aug;70(2):379–386. doi: 10.1172/JCI110627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shworak N. W., Shirakawa M., Mulligan R. C., Rosenberg R. D. Characterization of ryudocan glycosaminoglycan acceptor sites. J Biol Chem. 1994 Aug 19;269(33):21204–21214. [PubMed] [Google Scholar]
  28. Sugiura N., Sakurai K., Hori Y., Karasawa K., Suzuki S., Kimata K. Preparation of lipid-derivatized glycosaminoglycans to probe a regulatory function of the carbohydrate moieties of proteoglycans in cell-matrix interaction. J Biol Chem. 1993 Jul 25;268(21):15779–15787. [PubMed] [Google Scholar]
  29. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  30. Turner G. D., Morrison H., Jones M., Davis T. M., Looareesuwan S., Buley I. D., Gatter K. C., Newbold C. I., Pukritayakamee S., Nagachinta B. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994 Nov;145(5):1057–1069. [PMC free article] [PubMed] [Google Scholar]
  31. Udeinya I. J., Schmidt J. A., Aikawa M., Miller L. H., Green I. Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science. 1981 Jul 31;213(4507):555–557. doi: 10.1126/science.7017935. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES