Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Jul 1;182(1):5–13. doi: 10.1084/jem.182.1.5

Activation of CD4+ T cells in the presence of a nondepleting monoclonal antibody to CD4 induces a Th2-type response in vitro

PMCID: PMC2192090  PMID: 7790823

Abstract

In vitro experiments using purified rat CD4+ T cells in primary and secondary mixed leukocyte cultures (MLC) have been carried out to explore the mechanism of inhibition of cell-mediated autoimmune disease in the rat by a nondepleting monoclonal antibody (mAb) to CD4. Previous work has shown that W3/25, a mouse anti-rat CD4 mAb of immunoglobulin G1 isotype, completely prevents the development of the paralysis associated with experimental allergic encephalomyelitis (EAE) in Lewis rats, but does so without eliminating the encephalitogenic T cells. The in vitro experiments described in this study have shown that when CD4+ T cells were activated in the presence of the anti-CD4 mAb in a primary MLC, the synthesis of interferon (IFN) gamma, but not interleukin (IL) 2, was completely inhibited. After secondary stimulation, now in the absence of the mAb, the synthesis of IL-4 and IL-13 mRNA was greatly enhanced compared with that observed from CD4+ T cells derived from primary cultures in which the mAb was omitted. As IL-4 and IL-13 are known to antagonize cell-mediated immune reactions, and as EAE is cell- mediated disease, the data suggest that the W3/25 mAb controls EAE by modifying the cytokine repertoire of T cells that respond to the encephalitogen. The capacity for the mAb to suppress IFN-gamma synthesis provides, in part, an explanation for this change in cytokine production. These findings are discussed in terms of what is known of the factors that determine which cytokine genes are expressed on T cell activation. Possible implications for the evolution of T cell responses in human immunodeficiency virus infection are also discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur R. P., Mason D. T cells that help B cell responses to soluble antigen are distinguishable from those producing interleukin 2 on mitogenic or allogeneic stimulation. J Exp Med. 1986 Apr 1;163(4):774–786. doi: 10.1084/jem.163.4.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bierer B. E., Sleckman B. P., Ratnofsky S. E., Burakoff S. J. The biologic roles of CD2, CD4, and CD8 in T-cell activation. Annu Rev Immunol. 1989;7:579–599. doi: 10.1146/annurev.iy.07.040189.003051. [DOI] [PubMed] [Google Scholar]
  3. Bottomly K., Luqman M., Greenbaum L., Carding S., West J., Pasqualini T., Murphy D. B. A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. Eur J Immunol. 1989 Apr;19(4):617–623. doi: 10.1002/eji.1830190407. [DOI] [PubMed] [Google Scholar]
  4. Brideau R. J., Carter P. B., McMaster W. R., Mason D. W., Williams A. F. Two subsets of rat T lymphocytes defined with monoclonal antibodies. Eur J Immunol. 1980 Aug;10(8):609–615. doi: 10.1002/eji.1830100807. [DOI] [PubMed] [Google Scholar]
  5. Brostoff S. W., Mason D. W. Experimental allergic encephalomyelitis: successful treatment in vivo with a monoclonal antibody that recognizes T helper cells. J Immunol. 1984 Oct;133(4):1938–1942. [PubMed] [Google Scholar]
  6. Capon D. J., Ward R. H. The CD4-gp120 interaction and AIDS pathogenesis. Annu Rev Immunol. 1991;9:649–678. doi: 10.1146/annurev.iy.09.040191.003245. [DOI] [PubMed] [Google Scholar]
  7. Chirmule N., Wang X. P., Hu R., Oyaizu N., Roifman C., Pahwa R., Kalyanaraman V. S., Pahwa S. Envelope glycoproteins of HIV-1 interfere with T-cell-dependent B cell differentiation: role of CD4-MHC class II interaction in the effector phase of T cell help. Cell Immunol. 1994 Apr 15;155(1):169–182. doi: 10.1006/cimm.1994.1110. [DOI] [PubMed] [Google Scholar]
  8. Cobbold S. P., Qin S., Leong L. Y., Martin G., Waldmann H. Reprogramming the immune system for peripheral tolerance with CD4 and CD8 monoclonal antibodies. Immunol Rev. 1992 Oct;129:165–201. doi: 10.1111/j.1600-065x.1992.tb01423.x. [DOI] [PubMed] [Google Scholar]
  9. Dallman M. J., Mason D. W., Webb M. The roles of host and donor cells in the rejection of skin allografts by T cell-deprived rats injected with syngeneic T cells. Eur J Immunol. 1982 Jun;12(6):511–518. doi: 10.1002/eji.1830120612. [DOI] [PubMed] [Google Scholar]
  10. Daynes R. A., Araneo B. A. Contrasting effects of glucocorticoids on the capacity of T cells to produce the growth factors interleukin 2 and interleukin 4. Eur J Immunol. 1989 Dec;19(12):2319–2325. doi: 10.1002/eji.1830191221. [DOI] [PubMed] [Google Scholar]
  11. GOWANS J. L., KNIGHT E. J. THE ROUTE OF RE-CIRCULATION OF LYMPHOCYTES IN THE RAT. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:257–282. doi: 10.1098/rspb.1964.0001. [DOI] [PubMed] [Google Scholar]
  12. Gajewski T. F., Fitch F. W. Anti-proliferative effect of IFN-gamma in immune regulation. I. IFN-gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J Immunol. 1988 Jun 15;140(12):4245–4252. [PubMed] [Google Scholar]
  13. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  14. Houlgatte R., Scarmato P., el Marhomy S., Martin M., Ostankovitch M., Lafosse S., Vervisch A., Auffray C., Platier-Tonneau D. HLA class II antigens and the HIV envelope glycoprotein gp120 bind to the same face of CD4. J Immunol. 1994 May 1;152(9):4475–4488. [PubMed] [Google Scholar]
  15. Hsiung L., Barclay A. N., Brandon M. R., Sim E., Porter R. R. Purification of human C3b inactivator by monoclonal-antibody affinity chromatography. Biochem J. 1982 Apr 1;203(1):293–298. doi: 10.1042/bj2030293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hunt S. V., Fowler M. H. A repopulation assay for B and T lymphocyte stem cells employing radiation chimaeras. Cell Tissue Kinet. 1981 Jul;14(4):445–464. doi: 10.1111/j.1365-2184.1981.tb00551.x. [DOI] [PubMed] [Google Scholar]
  17. Kupiec-Weglinski J. W., Wasowska B., Papp I., Schmidbauer G., Sayegh M. H., Baldwin W. M., 3rd, Wieder K. J., Hancock W. W. CD4 mAb therapy modulates alloantibody production and intracardiac graft deposition in association with selective inhibition of Th1 lymphokines. J Immunol. 1993 Nov 1;151(9):5053–5061. [PubMed] [Google Scholar]
  18. Lakkis F. G., Cruet E. N. Cloning of rat interleukin-13 (IL-13) cDNA and analysis of IL-13 gene expression in experimental glomerulonephritis. Biochem Biophys Res Commun. 1993 Dec 15;197(2):612–618. doi: 10.1006/bbrc.1993.2523. [DOI] [PubMed] [Google Scholar]
  19. MacPhee I. A., Antoni F. A., Mason D. W. Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J Exp Med. 1989 Feb 1;169(2):431–445. doi: 10.1084/jem.169.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maggi E., Mazzetti M., Ravina A., Annunziato F., de Carli M., Piccinni M. P., Manetti R., Carbonari M., Pesce A. M., del Prete G. Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science. 1994 Jul 8;265(5169):244–248. doi: 10.1126/science.8023142. [DOI] [PubMed] [Google Scholar]
  21. Mannie M. D., Morrison-Plummer J., McConnell T. J. Differentiation of encephalitogenic T cells confers resistance to an inhibitory anti-CD4 monoclonal antibody. J Immunol. 1993 Dec 15;151(12):7293–7306. [PubMed] [Google Scholar]
  22. Mason D. Genetic variation in the stress response: susceptibility to experimental allergic encephalomyelitis and implications for human inflammatory disease. Immunol Today. 1991 Feb;12(2):57–60. doi: 10.1016/0167-5699(91)90158-P. [DOI] [PubMed] [Google Scholar]
  23. McKnight A. J., Barclay A. N., Mason D. W. Molecular cloning of rat interleukin 4 cDNA and analysis of the cytokine repertoire of subsets of CD4+ T cells. Eur J Immunol. 1991 May;21(5):1187–1194. doi: 10.1002/eji.1830210514. [DOI] [PubMed] [Google Scholar]
  24. McKnight A. J., Classon B. J. Biochemical and immunological properties of rat recombinant interleukin-2 and interleukin-4. Immunology. 1992 Feb;75(2):286–292. [PMC free article] [PubMed] [Google Scholar]
  25. McMaster W. R., Williams A. F. Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol. 1979 Jun;9(6):426–433. doi: 10.1002/eji.1830090603. [DOI] [PubMed] [Google Scholar]
  26. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  27. Pfeiffer C., Murray J., Madri J., Bottomly K. Selective activation of Th1- and Th2-like cells in vivo--response to human collagen IV. Immunol Rev. 1991 Oct;123:65–84. doi: 10.1111/j.1600-065x.1991.tb00606.x. [DOI] [PubMed] [Google Scholar]
  28. Powrie F., Mason D. Phenotypic and functional heterogeneity of CD4+ T cells. Immunol Today. 1988 Sep;9(9):274–277. doi: 10.1016/0167-5699(88)91309-6. [DOI] [PubMed] [Google Scholar]
  29. Powrie F., Menon S., Coffman R. L. Interleukin-4 and interleukin-10 synergize to inhibit cell-mediated immunity in vivo. Eur J Immunol. 1993 Sep;23(9):2223–2229. doi: 10.1002/eji.1830230926. [DOI] [PubMed] [Google Scholar]
  30. Racadot E., Rumbach L., Bataillard M., Galmiche J., Henlin J. L., Truttmann M., Herve P., Wijdenes J. Treatment of multiple sclerosis with anti-CD4 monoclonal antibody. A preliminary report on B-F5 in 21 patients. J Autoimmun. 1993 Dec;6(6):771–786. doi: 10.1006/jaut.1993.1063. [DOI] [PubMed] [Google Scholar]
  31. Sedgwick J. D., Mason D. W. The mechanism of inhibition of experimental allergic encephalomyelitis in the rat by monoclonal antibody against CD4. J Neuroimmunol. 1986 Dec;13(2):217–232. doi: 10.1016/0165-5728(86)90066-4. [DOI] [PubMed] [Google Scholar]
  32. Sher A., Gazzinelli R. T., Oswald I. P., Clerici M., Kullberg M., Pearce E. J., Berzofsky J. A., Mosmann T. R., James S. L., Morse H. C., 3rd Role of T-cell derived cytokines in the downregulation of immune responses in parasitic and retroviral infection. Immunol Rev. 1992 Jun;127:183–204. doi: 10.1111/j.1600-065x.1992.tb01414.x. [DOI] [PubMed] [Google Scholar]
  33. Shizuru J. A., Alters S. E., Fathman C. G. Anti-CD4 monoclonal antibodies in therapy: creation of nonclassical tolerance in the adult. Immunol Rev. 1992 Oct;129:105–130. doi: 10.1111/j.1600-065x.1992.tb01421.x. [DOI] [PubMed] [Google Scholar]
  34. Siegling A., Lehmann M., Riedel H., Platzer C., Brock J., Emmrich F., Volk H. D. A nondepleting anti-rat CD4 monoclonal antibody that suppresses T helper 1-like but not T helper 2-like intragraft lymphokine secretion induces long-term survival of renal allografts. Transplantation. 1994 Feb;57(3):464–467. doi: 10.1097/00007890-199402150-00028. [DOI] [PubMed] [Google Scholar]
  35. Webb M., Mason D. W., Williams A. F. Inhibition of mixed lymphocyte response by monoclonal antibody specific for a rat T lymphocyte subset. Nature. 1979 Dec 20;282(5741):841–843. doi: 10.1038/282841a0. [DOI] [PubMed] [Google Scholar]
  36. Williams A. F., Galfrè G., Milstein C. Analysis of cell surfaces by xenogeneic myeloma-hybrid antibodies: differentiation antigens of rat lymphocytes. Cell. 1977 Nov;12(3):663–673. doi: 10.1016/0092-8674(77)90266-5. [DOI] [PubMed] [Google Scholar]
  37. Zurawski G., de Vries J. E. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today. 1994 Jan;15(1):19–26. doi: 10.1016/0167-5699(94)90021-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES