Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Sep;163(3):882–889. doi: 10.1128/jb.163.3.882-889.1985

Plasmid-mediated mineralization of 4-chlorobiphenyl.

M S Shields, S W Hooper, G S Sayler
PMCID: PMC219214  PMID: 2993249

Abstract

Strains of Alcaligenes and Acinetobacter spp. were isolated from a mixed culture already proven to be proficient at complete mineralization of monohalogenated biphenyls. These strains were shown to harbor a 35 X 10(6)-dalton plasmid mediating a complete pathway for 4-chlorobiphenyl (4CB) oxidation. Subsequent plasmid curing of these bacteria resulted in the abolishment of the 4CB mineralization phenotype and loss of even early 4CB metabolism by Acinetobacter spp. Reestablishment of the Alcaligenes plasmid, denoted pSS50, in the cured Acinetobacter spp. via filter surface mating resulted in the restoration of 4CB mineralization abilities. 4CB mineralization, however, proved to be an unstable characteristic in some subcultured strains. Such loss was not found to coincide with any detectable alteration in plasmid size. Cultures capable of complete mineralization, as well as those limited to partial metabolism of 4CB, produced 4-chlorobenzoate as a metabolite. Demonstration of mineralization of a purified 14C-labeled chlorobenzoate showed it to be a true intermediate in 4CB mineralization. Unlike the mineralization capability, the ability to produce a metabolite has proven to be stable on subculture. These results indicate the occurrence of a novel plasmid, or evolved catabolic plasmid, that mediates the complete mineralization of 4CB.

Full text

PDF
882

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed M., Focht D. D. Degradation of polychlorinated biphenyls by two species of Achromobacter. Can J Microbiol. 1973 Jan;19(1):47–52. doi: 10.1139/m73-007. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. G., McKay L. L. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol. 1983 Sep;46(3):549–552. doi: 10.1128/aem.46.3.549-552.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dunn N. W., Gunsalus I. C. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol. 1973 Jun;114(3):974–979. doi: 10.1128/jb.114.3.974-979.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fisher P. R., Appleton J., Pemberton J. M. Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus. J Bacteriol. 1978 Sep;135(3):798–804. doi: 10.1128/jb.135.3.798-804.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Furukawa K., Chakrabarty A. M. Involvement of plasmids in total degradation of chlorinated biphenyls. Appl Environ Microbiol. 1982 Sep;44(3):619–626. doi: 10.1128/aem.44.3.619-626.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Furukawa K., Matsumura F. Microbial metabolism of polychlorinated biphenyls. Studies on the relative degradability of polychlorinated biphenyl components by Alkaligenes sp. J Agric Food Chem. 1976 Mar-Apr;24(2):251–256. doi: 10.1021/jf60204a002. [DOI] [PubMed] [Google Scholar]
  7. Furukawa K., Tonomura K., Kamibayashi A. Effect of chlorine substitution on the biodegradability of polychlorinated biphenyls. Appl Environ Microbiol. 1978 Feb;35(2):223–227. doi: 10.1128/aem.35.2.223-227.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jeenes D. J., Reineke W., Knackmuss H. J., Williams P. A. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: enzyme regulation and DNA structure. J Bacteriol. 1982 Apr;150(1):180–187. doi: 10.1128/jb.150.1.180-187.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kong H. L., Sayler G. S. Degradation and total mineralization of monohalogenated biphenyls in natural sediment and mixed bacterial culture. Appl Environ Microbiol. 1983 Sep;46(3):666–672. doi: 10.1128/aem.46.3.666-672.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Macrina F. L., Kopecko D. J., Jones K. R., Ayers D. J., McCowen S. M. A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid. 1978 Jun;1(3):417–420. doi: 10.1016/0147-619x(78)90056-2. [DOI] [PubMed] [Google Scholar]
  12. Massé R., Messier F., Péloquin L., Ayotte C., Sylvestre M. Microbial biodegradation of 4-chlorobiphenyl, a model compound of chlorinated biphenyls. Appl Environ Microbiol. 1984 May;47(5):947–951. doi: 10.1128/aem.47.5.947-951.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sayler G. S., Reid M. C., Perkins B. K., Pagni R. M., Smith R. L., Rao T. K., Epler J. L., Morrison W. D., DuFrain R. Evaluation of the mutagenic potential of bacterial polychlorinated biphenyl biodegradation products. Arch Environ Contam Toxicol. 1982 Sep;11(5):577–581. doi: 10.1007/BF01056365. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES