Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Aug 1;182(2):409–418. doi: 10.1084/jem.182.2.409

Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages

PMCID: PMC2192140  PMID: 7629503

Abstract

The relevance of the antibody-dependent cellular inhibition (ADCI) of Plasmodium falciparum to clinical protection has been previously established by in vitro studies of material obtained during passive transfer of protection by immunoglobulin G in humans. We here report further in vitro investigations aimed at elucidating the mechanisms underlying this ADCI effect. Results obtained so far suggest that (a) merozoite uptake by monocytes (MN) as well as by polymorphonuclear cells has little influence on the course of parasitemia; (b) the ADCI effect is mediated by a soluble factor released by MN; (c) this or these factors are able to block the division of surrounding intraerythrocytic parasites at the one nucleus stage; (d) the critical triggering antigen(s) targeted by effective Abs would appear to be associated with the surface of merozoites, as opposed to that of infected red blood cells; (e) the MN receptor for Abs effective in ADCI is apparently Fc gamma RII, and not RI; (f) MN function is up- and down- regulated by interferon-gamma and interleukin 4, respectively; and (g) of several potential mediators released by MN, only tumor necrosis factor (TNF) proved of relevance. The involvement of TNF in defense may explain the recently described increased frequency of the TNF-2 high- expression promoter in individuals living in endemic regions despite its compromising role in severe malaria.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker S., Daniel E. G. Antagonistic and additive effects of IL-4 and interferon-gamma on human monocytes and macrophages: effects on Fc receptors, HLA-D antigens, and superoxide production. Cell Immunol. 1990 Sep;129(2):351–362. doi: 10.1016/0008-8749(90)90211-9. [DOI] [PubMed] [Google Scholar]
  2. Bouharoun-Tayoun H., Attanath P., Sabchareon A., Chongsuphajaisiddhi T., Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med. 1990 Dec 1;172(6):1633–1641. doi: 10.1084/jem.172.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouharoun-Tayoun H., Druilhe P. Plasmodium falciparum malaria: evidence for an isotype imbalance which may be responsible for delayed acquisition of protective immunity. Infect Immun. 1992 Apr;60(4):1473–1481. doi: 10.1128/iai.60.4.1473-1481.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COHEN S., McGREGOR I. A., CARRINGTON S. Gamma-globulin and acquired immunity to human malaria. Nature. 1961 Nov 25;192:733–737. doi: 10.1038/192733a0. [DOI] [PubMed] [Google Scholar]
  5. Chiofalo M. S., Delfino D., Mancuso G., La Tassa E., Mastroeni P., Iannello D. Induction of tumor necrosis factor alpha by Leishmania infantum in murine macrophages from different inbred mice strains. Microb Pathog. 1992 Jan;12(1):9–17. doi: 10.1016/0882-4010(92)90061-r. [DOI] [PubMed] [Google Scholar]
  6. Clark I. A., Allison A. C., Cox F. E. Protection of mice against Babesia and Plasmodium with BCG. Nature. 1976 Jan 29;259(5541):309–311. doi: 10.1038/259309a0. [DOI] [PubMed] [Google Scholar]
  7. Descamps-Latscha B., Lunel-Fabiani F., Kara-Binis A., Druilhe P. Generation of reactive oxygen species in whole blood from patients with acute falciparum malaria. Parasite Immunol. 1987 Mar;9(2):275–279. doi: 10.1111/j.1365-3024.1987.tb00507.x. [DOI] [PubMed] [Google Scholar]
  8. Druilhe P., Khusmith S. Epidemiological correlation between levels of antibodies promoting merozoite phagocytosis of Plasmodium falciparum and malaria-immune status. Infect Immun. 1987 Apr;55(4):888–891. doi: 10.1128/iai.55.4.888-891.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fandeur T., Dubois P., Gysin J., Dedet J. P., da Silva L. P. In vitro and in vivo studies on protective and inhibitory antibodies against Plasmodium falciparum in the Saimiri monkey. J Immunol. 1984 Jan;132(1):432–437. [PubMed] [Google Scholar]
  10. Fanger M. W., Shen L., Graziano R. F., Guyre P. M. Cytotoxicity mediated by human Fc receptors for IgG. Immunol Today. 1989 Mar;10(3):92–99. doi: 10.1016/0167-5699(89)90234-X. [DOI] [PubMed] [Google Scholar]
  11. Grau G. E., Taylor T. E., Molyneux M. E., Wirima J. J., Vassalli P., Hommel M., Lambert P. H. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med. 1989 Jun 15;320(24):1586–1591. doi: 10.1056/NEJM198906153202404. [DOI] [PubMed] [Google Scholar]
  12. Haidaris C. G., Haynes J. D., Meltzer M. S., Allison A. C. Serum containing tumor necrosis factor is cytotoxic for the human malaria parasite Plasmodium falciparum. Infect Immun. 1983 Oct;42(1):385–393. doi: 10.1128/iai.42.1.385-393.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Khusmith S., Druilhe P. Antibody-dependent ingestion of P. falciparum merozoites by human blood monocytes. Parasite Immunol. 1983 Jul;5(4):357–368. doi: 10.1111/j.1365-3024.1983.tb00751.x. [DOI] [PubMed] [Google Scholar]
  14. Koolwijk P., Van de Winkel J. G., Otten I., Bast B. J. Human monocyte-mediated cytotoxicity towards erythrocytes induced by hybrid mouse monoclonal antibodies: effect of antibody binding valency on IgG-Fc gamma R interaction. Immunology. 1992 Feb;75(2):336–342. [PMC free article] [PubMed] [Google Scholar]
  15. Kwiatkowski D., Hill A. V., Sambou I., Twumasi P., Castracane J., Manogue K. R., Cerami A., Brewster D. R., Greenwood B. M. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990 Nov 17;336(8725):1201–1204. doi: 10.1016/0140-6736(90)92827-5. [DOI] [PubMed] [Google Scholar]
  16. Kwiatkowski D., Molyneux M. E., Stephens S., Curtis N., Klein N., Pointaire P., Smit M., Allan R., Brewster D. R., Grau G. E. Anti-TNF therapy inhibits fever in cerebral malaria. Q J Med. 1993 Feb;86(2):91–98. [PubMed] [Google Scholar]
  17. Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
  18. Long C. A. Immunity to blood stages of malaria. Curr Opin Immunol. 1993 Aug;5(4):548–556. doi: 10.1016/0952-7915(93)90036-r. [DOI] [PubMed] [Google Scholar]
  19. Looney R. J., Abraham G. N., Anderson C. L. Human monocytes and U937 cells bear two distinct Fc receptors for IgG. J Immunol. 1986 Mar 1;136(5):1641–1647. [PubMed] [Google Scholar]
  20. Lunel F., Descamps-Latscha B., Druilhe P. Activation of phagocyte oxidative metabolism by opsonized Plasmodium falciparum merozoites. Acta Trop. 1990 Feb;47(2):61–68. doi: 10.1016/0001-706x(90)90068-b. [DOI] [PubMed] [Google Scholar]
  21. Lunel F., Druilhe P. Effector cells involved in nonspecific and antibody-dependent mechanisms directed against Plasmodium falciparum blood stages in vitro. Infect Immun. 1989 Jul;57(7):2043–2049. doi: 10.1128/iai.57.7.2043-2049.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McColl D. J., Silva A., Foley M., Kun J. F., Favaloro J. M., Thompson J. K., Marshall V. M., Coppel R. L., Kemp D. J., Anders R. F. Molecular variation in a novel polymorphic antigen associated with Plasmodium falciparum merozoites. Mol Biochem Parasitol. 1994 Nov;68(1):53–67. doi: 10.1016/0166-6851(94)00149-9. [DOI] [PubMed] [Google Scholar]
  23. McGuire W., Hill A. V., Allsopp C. E., Greenwood B. M., Kwiatkowski D. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature. 1994 Oct 6;371(6497):508–510. doi: 10.1038/371508a0. [DOI] [PubMed] [Google Scholar]
  24. Mrema J. E., Langreth S. G., Jost R. C., Rieckmann K. H., Heidrich H. G. Plasmodium falciparum: isolation and purification of spontaneously released merozoites by nylon membrane sieves. Exp Parasitol. 1982 Dec;54(3):285–295. doi: 10.1016/0014-4894(82)90037-6. [DOI] [PubMed] [Google Scholar]
  25. Muñoz-Fernández M. A., Fernández M. A., Fresno M. Synergism between tumor necrosis factor-alpha and interferon-gamma on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism. Eur J Immunol. 1992 Feb;22(2):301–307. doi: 10.1002/eji.1830220203. [DOI] [PubMed] [Google Scholar]
  26. Naotunne T. S., Karunaweera N. D., Del Giudice G., Kularatne M. U., Grau G. E., Carter R., Mendis K. N. Cytokines kill malaria parasites during infection crisis: extracellular complementary factors are essential. J Exp Med. 1991 Mar 1;173(3):523–529. doi: 10.1084/jem.173.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Naotunne T. S., Karunaweera N. D., Mendis K. N., Carter R. Cytokine-mediated inactivation of malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates. Immunology. 1993 Apr;78(4):555–562. [PMC free article] [PubMed] [Google Scholar]
  28. Ockenhouse C. F., Magowan C., Chulay J. D. Activation of monocytes and platelets by monoclonal antibodies or malaria-infected erythrocytes binding to the CD36 surface receptor in vitro. J Clin Invest. 1989 Aug;84(2):468–475. doi: 10.1172/JCI114188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oeuvray C., Bouharoun-Tayoun H., Gras-Masse H., Bottius E., Kaidoh T., Aikawa M., Filgueira M. C., Tartar A., Druilhe P. Merozoite surface protein-3: a malaria protein inducing antibodies that promote Plasmodium falciparum killing by cooperation with blood monocytes. Blood. 1994 Sep 1;84(5):1594–1602. [PubMed] [Google Scholar]
  30. Perussia B., Dayton E. T., Lazarus R., Fanning V., Trinchieri G. Immune interferon induces the receptor for monomeric IgG1 on human monocytic and myeloid cells. J Exp Med. 1983 Oct 1;158(4):1092–1113. doi: 10.1084/jem.158.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Polat G. L., Laufer J., Fabian I., Passwell J. H. Cross-linking of monocyte plasma membrane Fc alpha, Fc gamma or mannose receptors induces TNF production. Immunology. 1993 Oct;80(2):287–292. [PMC free article] [PubMed] [Google Scholar]
  32. Pouvelle B., Spiegel R., Hsiao L., Howard R. J., Morris R. L., Thomas A. P., Taraschi T. F. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature. 1991 Sep 5;353(6339):73–75. doi: 10.1038/353073a0. [DOI] [PubMed] [Google Scholar]
  33. Romero P. Malaria vaccines. Curr Opin Immunol. 1992 Aug;4(4):432–441. doi: 10.1016/s0952-7915(06)80035-x. [DOI] [PubMed] [Google Scholar]
  34. Rzepczyk C. M., Lopez J. A., Anderson K. L., Alpers M. P. Investigation of the effect of monocytes with Papua New Guinea sera on Plasmodium falciparum in culture. Int J Parasitol. 1988 Apr;18(3):401–406. doi: 10.1016/0020-7519(88)90151-8. [DOI] [PubMed] [Google Scholar]
  35. Sabchareon A., Burnouf T., Ouattara D., Attanath P., Bouharoun-Tayoun H., Chantavanich P., Foucault C., Chongsuphajaisiddhi T., Druilhe P. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg. 1991 Sep;45(3):297–308. doi: 10.4269/ajtmh.1991.45.297. [DOI] [PubMed] [Google Scholar]
  36. Smith M. R., Munger W. E., Kung H. F., Takacs L., Durum S. K. Direct evidence for an intracellular role for tumor necrosis factor-alpha 1. Microinjection of tumor necrosis factor kills target cells. J Immunol. 1990 Jan 1;144(1):162–169. [PubMed] [Google Scholar]
  37. Trager W., Jenson J. B. Cultivation of malarial parasites. Nature. 1978 Jun 22;273(5664):621–622. doi: 10.1038/273621a0. [DOI] [PubMed] [Google Scholar]
  38. Tucker S. B., Pierre R. V., Jordon R. E. Rapid identification of monocytes in a mixed mononuclear cell preparation. J Immunol Methods. 1977;14(3-4):267–269. doi: 10.1016/0022-1759(77)90137-5. [DOI] [PubMed] [Google Scholar]
  39. Van Ostade X., Tavernier J., Fiers W. Structure-activity studies of human tumour necrosis factors. Protein Eng. 1994 Jan;7(1):5–22. doi: 10.1093/protein/7.1.5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES