Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Sep 1;182(3):897–902. doi: 10.1084/jem.182.3.897

Prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides

PMCID: PMC2192152  PMID: 7650494

Abstract

In the nonobese diabetic (NOD) mouse, susceptibility to insulin- dependent diabetes mellitus is in part controlled by a single expressed class II major histocompatibility complex (MHC) molecule, I-Ag7. This molecule probably exerts its control through the representation of a self-peptide, derived from an unknown beta cell antigen, leading to T cell activation and eventual islet destruction. In this paper, synthetic peptides have been used to compete for binding to the I-Ag7 molecule in an attempt to suppress the autoimmune response. The administration of an I-Ag7-binding immunogenic peptide, lambda repressor (cI) 12-26, in a water and oil emulsion (incomplete Freund's adjuvant) can prevent the transfer of IDDM into irradiated recipients by spleen cells from diabetic donors. Nonbinding, nonimmunogenic peptides have no effect in this situation. However, the immune response to the "blocking" peptide in these experiments was a complicating factor in interpreting the results. To establish that the effect was at the level of competition for MHC binding, two additional approaches were tried. First, tolerance was induced to the immunogenic peptide, cI 12-26, before using it to "block" disease. Tolerance abolished the effect on diabetes transfer. Second, an effort was made to identify peptides that were nonimmunogenic but that bound to I-Ag7. Such a peptide, mouse prostatic secretory glycoprotein precursor 63-76, had no effect on the incidence of transferred disease. We conclude that the "blocking" effects seen in initial experiments in the NOD mouse were not caused by blockade of MHC presentation, but by other unknown effects related to the immunogenicity of the "blocking" peptide.

Full Text

The Full Text of this article is available as a PDF (527.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adorini L., Muller S., Cardinaux F., Lehmann P. V., Falcioni F., Nagy Z. A. In vivo competition between self peptides and foreign antigens in T-cell activation. Nature. 1988 Aug 18;334(6183):623–625. doi: 10.1038/334623a0. [DOI] [PubMed] [Google Scholar]
  2. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hurtenbach U., Lier E., Adorini L., Nagy Z. A. Prevention of autoimmune diabetes in non-obese diabetic mice by treatment with a class II major histocompatibility complex-blocking peptide. J Exp Med. 1993 May 1;177(5):1499–1504. doi: 10.1084/jem.177.5.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kaufman D. L., Clare-Salzler M., Tian J., Forsthuber T., Ting G. S., Robinson P., Atkinson M. A., Sercarz E. E., Tobin A. J., Lehmann P. V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993 Nov 4;366(6450):69–72. doi: 10.1038/366069a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Qin H. Y., Sadelain M. W., Hitchon C., Lauzon J., Singh B. Complete Freund's adjuvant-induced T cells prevent the development and adoptive transfer of diabetes in nonobese diabetic mice. J Immunol. 1993 Mar 1;150(5):2072–2080. [PubMed] [Google Scholar]
  6. Sakai K., Zamvil S. S., Mitchell D. J., Hodgkinson S., Rothbard J. B., Steinman L. Prevention of experimental encephalomyelitis with peptides that block interaction of T cells with major histocompatibility complex proteins. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9470–9474. doi: 10.1073/pnas.86.23.9470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schlegel P. G., Aharoni R., Smilek D. E., Fernandez L. P., McDevitt H. O., Tran N., Vaysburd M., Chao N. J. Prevention of graft-versus-host disease by peptides binding to class II major histocompatibility complex molecules. Blood. 1994 Oct 15;84(8):2802–2810. [PubMed] [Google Scholar]
  8. Sette A., Alexander J., Ruppert J., Snoke K., Franco A., Ishioka G., Grey H. M. Antigen analogs/MHC complexes as specific T cell receptor antagonists. Annu Rev Immunol. 1994;12:413–431. doi: 10.1146/annurev.iy.12.040194.002213. [DOI] [PubMed] [Google Scholar]
  9. Shehadeh N. N., LaRosa F., Lafferty K. J. Altered cytokine activity in adjuvant inhibition of autoimmune diabetes. J Autoimmun. 1993 Jun;6(3):291–300. doi: 10.1006/jaut.1993.1025. [DOI] [PubMed] [Google Scholar]
  10. Singer S. M., Tisch R., Yang X. D., McDevitt H. O. An Abd transgene prevents diabetes in nonobese diabetic mice by inducing regulatory T cells. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9566–9570. doi: 10.1073/pnas.90.20.9566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sloan-Lancaster J., Evavold B. D., Allen P. M. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature. 1993 May 13;363(6425):156–159. doi: 10.1038/363156a0. [DOI] [PubMed] [Google Scholar]
  12. Smilek D. E., Wraith D. C., Hodgkinson S., Dwivedy S., Steinman L., McDevitt H. O. A single amino acid change in a myelin basic protein peptide confers the capacity to prevent rather than induce experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9633–9637. doi: 10.1073/pnas.88.21.9633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith S. C., Allen P. M. Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol. 1991 Oct 1;147(7):2141–2147. [PubMed] [Google Scholar]
  14. Tisch R., Yang X. D., Singer S. M., Liblau R. S., Fugger L., McDevitt H. O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993 Nov 4;366(6450):72–75. doi: 10.1038/366072a0. [DOI] [PubMed] [Google Scholar]
  15. Todd J. A. Genetic control of autoimmunity in type 1 diabetes. Immunol Today. 1990 Apr;11(4):122–129. doi: 10.1016/0167-5699(90)90049-f. [DOI] [PubMed] [Google Scholar]
  16. Wauben M. H., Boog C. J., van der Zee R., Joosten I., Schlief A., van Eden W. Disease inhibition by major histocompatibility complex binding peptide analogues of disease-associated epitopes: more than blocking alone. J Exp Med. 1992 Sep 1;176(3):667–677. doi: 10.1084/jem.176.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wicker L. S., Miller B. J., Mullen Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes. 1986 Aug;35(8):855–860. doi: 10.2337/diab.35.8.855. [DOI] [PubMed] [Google Scholar]
  18. Wraith D. C., Smilek D. E., Mitchell D. J., Steinman L., McDevitt H. O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell. 1989 Oct 20;59(2):247–255. doi: 10.1016/0092-8674(89)90287-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES