Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Sep 1;182(3):743–750. doi: 10.1084/jem.182.3.743

Random mutagenesis of two complementarity determining region amino acids yields an unexpectedly high frequency of antibodies with increased affinity for both cognate antigen and autoantigen

PMCID: PMC2192174  PMID: 7650481

Abstract

To gain insight into the mechanism and limitations of antibody affinity maturation leading to memory B cell formation, we generated a phage display library of random mutants at heavy chain variable (V) complementarity determining region 2 positions 58 and 59 of an anti-p- azophenylarsonate (Ars) Fab. Single amino acid substitutions at these positions resulting from somatic hypermutation are recurrent products of affinity maturation in vivo. Most of the ex vivo mutants retained specificity for Ars. Among the many mutants displaying high Ars-binding activity, only one contained a position 58 and 59 amino acid combination that has been previously observed among the monoclonal antibodies (mAbs) derived from Ars-immunized mice. Affinity measurements on 14 of the ex vivo mutants with high Ars-binding activity showed that 11 had higher intrinsic affinities for Ars that the wild-type V region. However, nine of these Fabs also bound strongly to denatured DNA, a property neither displayed by the wild-type V region nor observed among the mutants characteristic of in vivo affinity maturation. These data suggest that ex vivo enhancement of mAb affinity via site-directed and random mutagenesis approaches may often lead to a reduction in antibody specificity that could complicate the use of the resulting mAbs for diagnostic and therapeutic applications. Moreover, the data are compatible with a hypothesis proposing that increased specificity for antigen, rather than affinity per se, is the driving force for formation of the memory B cell compartment.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony J., Near R., Wong S. L., Iida E., Ernst E., Wittekind M., Haber E., Ng S. C. Production of stable anti-digoxin Fv in Escherichia coli. Mol Immunol. 1992 Oct;29(10):1237–1247. doi: 10.1016/0161-5890(92)90060-b. [DOI] [PubMed] [Google Scholar]
  2. Barbas C. F., 3rd, Kang A. S., Lerner R. A., Benkovic S. J. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7978–7982. doi: 10.1073/pnas.88.18.7978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berek C., Milstein C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev. 1987 Apr;96:23–41. doi: 10.1111/j.1600-065x.1987.tb00507.x. [DOI] [PubMed] [Google Scholar]
  4. Betz A. G., Rada C., Pannell R., Milstein C., Neuberger M. S. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2385–2388. doi: 10.1073/pnas.90.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blier P. R., Bothwell A. L. The immune response to the hapten NP in C57BL/6 mice: insights into the structure of the B-cell repertoire. Immunol Rev. 1988 Oct;105:27–43. doi: 10.1111/j.1600-065x.1988.tb00764.x. [DOI] [PubMed] [Google Scholar]
  6. Chen C., Roberts V. A., Rittenberg M. B. Generation and analysis of random point mutations in an antibody CDR2 sequence: many mutated antibodies lose their ability to bind antigen. J Exp Med. 1992 Sep 1;176(3):855–866. doi: 10.1084/jem.176.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diamond B., Katz J. B., Paul E., Aranow C., Lustgarten D., Scharff M. D. The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol. 1992;10:731–757. doi: 10.1146/annurev.iy.10.040192.003503. [DOI] [PubMed] [Google Scholar]
  8. Diamond B., Scharff M. D. Somatic mutation of the T15 heavy chain gives rise to an antibody with autoantibody specificity. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5841–5844. doi: 10.1073/pnas.81.18.5841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Erikson J., Radic M. Z., Camper S. A., Hardy R. R., Carmack C., Weigert M. Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature. 1991 Jan 24;349(6307):331–334. doi: 10.1038/349331a0. [DOI] [PubMed] [Google Scholar]
  10. Fish S., Fleming M., Sharon J., Manser T. Different epitope structures select distinct mutant forms of an antibody variable region for expression during the immune response. J Exp Med. 1991 Mar 1;173(3):665–672. doi: 10.1084/jem.173.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foote J., Milstein C. Kinetic maturation of an immune response. Nature. 1991 Aug 8;352(6335):530–532. doi: 10.1038/352530a0. [DOI] [PubMed] [Google Scholar]
  12. Gearhart P. J., Bogenhagen D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3439–3443. doi: 10.1073/pnas.80.11.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Golding G. B., Gearhart P. J., Glickman B. W. Patterns of somatic mutations in immunoglobulin variable genes. Genetics. 1987 Jan;115(1):169–176. doi: 10.1093/genetics/115.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horton R. M., Ho S. N., Pullen J. K., Hunt H. D., Cai Z., Pease L. R. Gene splicing by overlap extension. Methods Enzymol. 1993;217:270–279. doi: 10.1016/0076-6879(93)17067-f. [DOI] [PubMed] [Google Scholar]
  15. Innis M. A., Myambo K. B., Gelfand D. H., Brow M. A. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9436–9440. doi: 10.1073/pnas.85.24.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klinman N. R., Linton P. J. The clonotype repertoire of B cell subpopulations. Adv Immunol. 1988;42:1–93. doi: 10.1016/s0065-2776(08)60842-1. [DOI] [PubMed] [Google Scholar]
  17. Linton P. J., Rudie A., Klinman N. R. Tolerance susceptibility of newly generating memory B cells. J Immunol. 1991 Jun 15;146(12):4099–4104. [PubMed] [Google Scholar]
  18. MacLennan I. C. Germinal centers. Annu Rev Immunol. 1994;12:117–139. doi: 10.1146/annurev.iy.12.040194.001001. [DOI] [PubMed] [Google Scholar]
  19. Manser T. Limits on heavy chain junctional diversity contribute to the recurrence of an antibody variable region. Mol Immunol. 1990 Jun;27(6):503–511. doi: 10.1016/0161-5890(90)90069-c. [DOI] [PubMed] [Google Scholar]
  20. Manser T., Wysocki L. J., Margolies M. N., Gefter M. L. Evolution of antibody variable region structure during the immune response. Immunol Rev. 1987 Apr;96:141–162. doi: 10.1111/j.1600-065x.1987.tb00513.x. [DOI] [PubMed] [Google Scholar]
  21. Marion T. N., Tillman D. M., Jou N. T., Hill R. J. Selection of immunoglobulin variable regions in autoimmunity to DNA. Immunol Rev. 1992 Aug;128:123–149. doi: 10.1111/j.1600-065x.1992.tb00835.x. [DOI] [PubMed] [Google Scholar]
  22. Naparstek Y., André-Schwartz J., Manser T., Wysocki L. J., Breitman L., Stollar B. D., Gefter M., Schwartz R. S. A single germline VH gene segment of normal A/J mice encodes autoantibodies characteristic of systemic lupus erythematosus. J Exp Med. 1986 Aug 1;164(2):614–626. doi: 10.1084/jem.164.2.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Offen D., Spatz L., Escowitz H., Factor S., Diamond B. Induction of tolerance to an IgG autoantibody. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8332–8336. doi: 10.1073/pnas.89.17.8332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parhami-Seren B., Kussie P. H., Strong R. K., Margolies M. N. Conservation of binding site geometry among p-azophenylarsonate-specific antibodies. J Immunol. 1993 Mar 1;150(5):1829–1837. [PubMed] [Google Scholar]
  25. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  26. Radic M. Z., Mackle J., Erikson J., Mol C., Anderson W. F., Weigert M. Residues that mediate DNA binding of autoimmune antibodies. J Immunol. 1993 Jun 1;150(11):4966–4977. [PubMed] [Google Scholar]
  27. Radic M. Z., Weigert M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol. 1994;12:487–520. doi: 10.1146/annurev.iy.12.040194.002415. [DOI] [PubMed] [Google Scholar]
  28. Rajewsky K., Förster I., Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science. 1987 Nov 20;238(4830):1088–1094. doi: 10.1126/science.3317826. [DOI] [PubMed] [Google Scholar]
  29. Rothstein T. L., Gefter M. L. Affinity analysis of idiotype-positive and idiotype-negative Ars-binding hybridoma proteins and Ars-immune sera. Mol Immunol. 1983 Feb;20(2):161–168. doi: 10.1016/0161-5890(83)90127-x. [DOI] [PubMed] [Google Scholar]
  30. Sharon J., Gefter M. L., Wysocki L. J., Margolies M. N. Recurrent somatic mutations in mouse antibodies to p-azophenylarsonate increase affinity for hapten. J Immunol. 1989 Jan 15;142(2):596–601. [PubMed] [Google Scholar]
  31. Sharon J. Structural correlates of high antibody affinity: three engineered amino acid substitutions can increase the affinity of an anti-p-azophenylarsonate antibody 200-fold. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4814–4817. doi: 10.1073/pnas.87.12.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sompuram S. R., Sharon J. Verification of a model of a F(ab) complex with phenylarsonate by oligonucleotide-directed mutagenesis. J Immunol. 1993 Mar 1;150(5):1822–1828. [PubMed] [Google Scholar]
  33. Strong R. K., Campbell R., Rose D. R., Petsko G. A., Sharon J., Margolies M. N. Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 1. X-ray crystallography, site-directed mutagenesis, and modeling of the complex with hapten. Biochemistry. 1991 Apr 16;30(15):3739–3748. doi: 10.1021/bi00229a022. [DOI] [PubMed] [Google Scholar]
  34. Strong R. K., Petsko G. A., Sharon J., Margolies M. N. Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 2. Structural basis of hapten binding and idiotypy. Biochemistry. 1991 Apr 16;30(15):3749–3757. doi: 10.1021/bi00229a023. [DOI] [PubMed] [Google Scholar]
  35. Weber J. S., Berry J., Manser T., Claflin J. L. Mutations in Ig V(D)J genes are distributed asymmetrically and independently of the position of V(D)J. J Immunol. 1994 Oct 15;153(8):3594–3602. [PubMed] [Google Scholar]
  36. Winter G., Griffiths A. D., Hawkins R. E., Hoogenboom H. R. Making antibodies by phage display technology. Annu Rev Immunol. 1994;12:433–455. doi: 10.1146/annurev.iy.12.040194.002245. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES