Abstract
Increasing evidence suggests that the metabolism of arachidonic acid (AA) may be different in inflammatory cells isolated from blood or migrating into tissues. To explore the possibility that changes in AA metabolism between blood and tissue inflammatory cells could be due in part to a different content or distribution of AA in glycerolipid classes, we studied these parameters in six human inflammatory cells isolated from blood (eosinophils, monocytes, neutrophils, and platelets) or from the lung tissue (mast cells and macrophages). Lung cells generally had a higher total cellular content of AA than that found in the blood cells. In addition, both mast cells and macrophages had a large endogenous pool of AA associated with triglycerides (TG), containing 45 and 22% of their total cellular AA, respectively. To address the hypothesis that cells migrating into the lung had a higher cellular level of AA and a larger AA pool in TG, we studied neutrophils isolated from the bronchoalveolar lavage (BAL) of patients with adult respiratory distress syndrome. BAL neutrophils had a fourfold increase in cellular AA as compared with blood neutrophils and contained 25% of their AA in TG versus 3% in blood neutrophils. BAL neutrophils also had a higher number of cytoplasmic lipid bodies (8 +/- 3/cell) relative to blood neutrophils (2 +/- 1/cell). High concentrations of free AA were also found in the cell-free BAL fluid of adult respiratory distress syndrome patients. To explore whether changes in BAL neutrophils may be due to the exposure of the cells to high concentrations of exogenous AA found in BAL, we incubated blood neutrophils in culture with AA (10-100 microM) for 24 h. Neutrophils supplemented with AA had a 10-fold increase in the amount of AA associated with TG and a sixfold increase in the number of lipid bodies. In addition, supplementation with AA induced a dose-dependent formation of hypodense cells. Taken together, these data indicate that human inflammatory cells undergo a fundamental and consistent remodeling of AA pools as they mature or enter the lung from the blood. These biochemical and morphological changes can be mimicked in vitro by exposing the cells to high levels of AA. This mechanism may be responsible for the changes in AA mobilization and eicosanoid metabolism observed in tissue inflammatory cells.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Blank M. L., Smith Z. L., Snyder F. Arachidonate-containing triacylglycerols: biosynthesis and a lipolytic mechanism for the release and transfer of arachidonate to phospholipids in HL-60 cells. Biochim Biophys Acta. 1993 Nov 3;1170(3):275–282. doi: 10.1016/0005-2760(93)90010-7. [DOI] [PubMed] [Google Scholar]
- Bochner B. S., Lichtenstein L. M. Anaphylaxis. N Engl J Med. 1991 Jun 20;324(25):1785–1790. doi: 10.1056/NEJM199106203242506. [DOI] [PubMed] [Google Scholar]
- Brezinski M. E., Serhan C. N. Selective incorporation of (15S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6248–6252. doi: 10.1073/pnas.87.16.6248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock T. G., Paine R., 3rd, Peters-Golden M. Localization of 5-lipoxygenase to the nucleus of unstimulated rat basophilic leukemia cells. J Biol Chem. 1994 Sep 2;269(35):22059–22066. [PubMed] [Google Scholar]
- Burton K. P., Buja L. M., Sen A., Willerson J. T., Chien K. R. Accumulation of arachidonate in triacylglycerols and unesterified fatty acids during ischemia and reflow in the isolated rat heart. Correlation with the loss of contractile function and the development of calcium overload. Am J Pathol. 1986 Aug;124(2):238–245. [PMC free article] [PubMed] [Google Scholar]
- Busse W. W., Sedgwick J. B., Jarjour N. N., Calhoun W. J. Eosinophils and basophils in allergic airway inflammation. J Allergy Clin Immunol. 1994 Dec;94(6 Pt 2):1250–1254. doi: 10.1016/0091-6749(94)90339-5. [DOI] [PubMed] [Google Scholar]
- Calhoun W. J., Jarjour N. N., Gleich G. J., Stevens C. A., Busse W. W. Increased airway inflammation with segmental versus aerosol antigen challenge. Am Rev Respir Dis. 1993 Jun;147(6 Pt 1):1465–1471. doi: 10.1164/ajrccm/147.6_Pt_1.1465. [DOI] [PubMed] [Google Scholar]
- Campbell G. S., Cone J. B. Adult respiratory distress syndrome. Am J Surg. 1991 Feb;161(2):239–242. doi: 10.1016/0002-9610(91)91138-9. [DOI] [PubMed] [Google Scholar]
- Caulfield J. P., Hein A., Rothenberg M. E., Owen W. F., Soberman R. J., Stevens R. L., Austen K. F. A morphometric study of normodense and hypodense human eosinophils that are derived in vivo and in vitro. Am J Pathol. 1990 Jul;137(1):27–41. [PMC free article] [PubMed] [Google Scholar]
- Chanez P., Bousquet J., Couret I., Cornillac L., Barneon G., Vic P., Michel F. B., Godard P. Increased numbers of hypodense alveolar macrophages in patients with bronchial asthma. Am Rev Respir Dis. 1991 Oct;144(4):923–930. doi: 10.1164/ajrccm/144.4.923. [DOI] [PubMed] [Google Scholar]
- Chilton F. H., Lichtenstein L. M. Lipid mediators of the allergic reaction. Chem Immunol. 1990;49:173–205. [PubMed] [Google Scholar]
- Chilton F. H., Murphy R. C. Stimulated production and natural occurrence of 1,2-diarachidonoylglycerophosphocholine in human neutrophils. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1126–1133. doi: 10.1016/0006-291x(87)91554-3. [DOI] [PubMed] [Google Scholar]
- Chilton F. H., Patel M., Fonteh A. N., Hubbard W. C., Triggiani M. Dietary n-3 fatty acid effects on neutrophil lipid composition and mediator production. Influence of duration and dosage. J Clin Invest. 1993 Jan;91(1):115–122. doi: 10.1172/JCI116159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chollet-Martin S., Montravers P., Gibert C., Elbim C., Desmonts J. M., Fagon J. Y., Gougerot-Pocidalo M. A. Subpopulation of hyperresponsive polymorphonuclear neutrophils in patients with adult respiratory distress syndrome. Role of cytokine production. Am Rev Respir Dis. 1992 Oct;146(4):990–996. doi: 10.1164/ajrccm/146.4.990. [DOI] [PubMed] [Google Scholar]
- Coffey M. J., Gyetko M., Peters-Golden M. 1,25-Dihydroxyvitamin D3 upregulates 5-lipoxygenase metabolism and 5-lipoxygenase activating protein in peripheral blood monocytes as they differentiate into mature macrophages. J Lipid Mediat. 1993 Mar-Apr;6(1-3):43–51. [PubMed] [Google Scholar]
- Coffey M. J., Wilcoxen S. E., Peters-Golden M. Increases in 5-lipoxygenase activating protein expression account for enhanced capacity for 5-lipoxygenase metabolism that accompanies differentiation of peripheral blood monocytes into alveolar macrophages. Am J Respir Cell Mol Biol. 1994 Aug;11(2):153–158. doi: 10.1165/ajrcmb.11.2.8049076. [DOI] [PubMed] [Google Scholar]
- Coffey M., Peters-Golden M., Fantone J. C., 3rd, Sporn P. H. Membrane association of active 5-lipoxygenase in resting cells. Evidence for novel regulation of the enzyme in the rat alveolar macrophage. J Biol Chem. 1992 Jan 5;267(1):570–576. [PubMed] [Google Scholar]
- Diez E., Chilton F. H., Stroup G., Mayer R. J., Winkler J. D., Fonteh A. N. Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate. Biochem J. 1994 Aug 1;301(Pt 3):721–726. doi: 10.1042/bj3010721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Driver A. G., Kukoly C. A., Ali S., Mustafa S. J. Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis. 1993 Jul;148(1):91–97. doi: 10.1164/ajrccm/148.1.91. [DOI] [PubMed] [Google Scholar]
- Dvorak A. M., Weller P. F., Harvey V. S., Morgan E. S., Dvorak H. F. Ultrastructural localization of prostaglandin endoperoxide synthase (cyclooxygenase) to isolated, purified fractions of guinea pig peritoneal macrophage and line 10 hepatocarcinoma cell lipid bodies. Int Arch Allergy Immunol. 1993;101(2):136–142. doi: 10.1159/000236511. [DOI] [PubMed] [Google Scholar]
- Dvoràk A. M., Morgan E. S., Tzizik D. M., Weller P. F. Prostaglandin endoperoxide synthase (cyclooxygenase): ultrastructural localization to nonmembrane-bound cytoplasmic lipid bodies in human eosinophils and 3T3 fibroblasts. Int Arch Allergy Immunol. 1994 Nov;105(3):245–250. doi: 10.1159/000236764. [DOI] [PubMed] [Google Scholar]
- Fonteh A. N., Bass D. A., Marshall L. A., Seeds M., Samet J. M., Chilton F. H. Evidence that secretory phospholipase A2 plays a role in arachidonic acid release and eicosanoid biosynthesis by mast cells. J Immunol. 1994 Jun 1;152(11):5438–5446. [PubMed] [Google Scholar]
- Fonteh A. N., Chilton F. H. Mobilization of different arachidonate pools and their roles in the generation of leukotrienes and free arachidonic acid during immunologic activation of mast cells. J Immunol. 1993 Jan 15;150(2):563–570. [PubMed] [Google Scholar]
- Georas S. N., Liu M. C., Newman W., Beall L. D., Stealey B. A., Bochner B. S. Altered adhesion molecule expression and endothelial cell activation accompany the recruitment of human granulocytes to the lung after segmental antigen challenge. Am J Respir Cell Mol Biol. 1992 Sep;7(3):261–269. doi: 10.1165/ajrcmb/7.3.261. [DOI] [PubMed] [Google Scholar]
- Golino P., Ambrosio G., Ragni M., Pascucci I., Triggiani M., Oriente A., McNatt J., Buja L. M., Condorelli M., Chiariello M. Short-term and long-term role of platelet activating factor as a mediator of in vivo platelet aggregation. Circulation. 1993 Sep;88(3):1205–1214. doi: 10.1161/01.cir.88.3.1205. [DOI] [PubMed] [Google Scholar]
- Hansel T. T., De Vries I. J., Iff T., Rihs S., Wandzilak M., Betz S., Blaser K., Walker C. An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J Immunol Methods. 1991 Dec 15;145(1-2):105–110. doi: 10.1016/0022-1759(91)90315-7. [DOI] [PubMed] [Google Scholar]
- Härtel B., Morwinski R., Heydeck D., Papies B. Arachidonic acid metabolism in cultured adult myocardial cells under short-time hypoxic conditions. Mol Cell Biochem. 1991 Jul 24;106(1):67–74. doi: 10.1007/BF00231190. [DOI] [PubMed] [Google Scholar]
- Kroegel C., Liu M. C., Hubbard W. C., Lichtenstein L. M., Bochner B. S. Blood and bronchoalveolar eosinophils in allergic subjects after segmental antigen challenge: surface phenotype, density heterogeneity, and prostanoid production. J Allergy Clin Immunol. 1994 Apr;93(4):725–734. doi: 10.1016/0091-6749(94)90252-6. [DOI] [PubMed] [Google Scholar]
- Kuo H. P., Yu T. R., Yu C. T. Hypodense eosinophil number relates to clinical severity, airway hyperresponsiveness and response to inhaled corticosteroids in asthmatic subjects. Eur Respir J. 1994 Aug;7(8):1452–1459. doi: 10.1183/09031936.94.07081452. [DOI] [PubMed] [Google Scholar]
- Lin C. C., Lin C. Y. Enhanced chemiluminescence with decreased antibody-dependent cellular cytotoxicity of human alveolar neutrophil in patients with adult respiratory distress syndrome. Respiration. 1992;59(5):265–271. doi: 10.1159/000196071. [DOI] [PubMed] [Google Scholar]
- Murakami M., Matsumoto R., Urade Y., Austen K. F., Arm J. P. c-kit ligand mediates increased expression of cytosolic phospholipase A2, prostaglandin endoperoxide synthase-1, and hematopoietic prostaglandin D2 synthase and increased IgE-dependent prostaglandin D2 generation in immature mouse mast cells. J Biol Chem. 1995 Feb 17;270(7):3239–3246. doi: 10.1074/jbc.270.7.3239. [DOI] [PubMed] [Google Scholar]
- Neagos G. R., Feyssa A., Peters-Golden M. Phospholipase A2 in alveolar type II epithelial cells: biochemical and immunologic characterization. Am J Physiol. 1993 Mar;264(3 Pt 1):L261–L268. doi: 10.1152/ajplung.1993.264.3.L261. [DOI] [PubMed] [Google Scholar]
- Ohnishi T., Kita H., Weiler D., Sur S., Sedgwick J. B., Calhoun W. J., Busse W. W., Abrams J. S., Gleich G. J. IL-5 is the predominant eosinophil-active cytokine in the antigen-induced pulmonary late-phase reaction. Am Rev Respir Dis. 1993 Apr;147(4):901–907. doi: 10.1164/ajrccm/147.4.901. [DOI] [PubMed] [Google Scholar]
- Owen W. F., Jr, Petersen J., Austen K. F. Eosinophils altered phenotypically and primed by culture with granulocyte/macrophage colony-stimulating factor and 3T3 fibroblasts generate leukotriene C4 in response to FMLP. J Clin Invest. 1991 Jun;87(6):1958–1963. doi: 10.1172/JCI115222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters-Golden M., McNish R. W. Redistribution of 5-lipoxygenase and cytosolic phospholipase A2 to the nuclear fraction upon macrophage activation. Biochem Biophys Res Commun. 1993 Oct 15;196(1):147–153. doi: 10.1006/bbrc.1993.2227. [DOI] [PubMed] [Google Scholar]
- Reddy S. T., Herschman H. R. Ligand-induced prostaglandin synthesis requires expression of the TIS10/PGS-2 prostaglandin synthase gene in murine fibroblasts and macrophages. J Biol Chem. 1994 Jun 3;269(22):15473–15480. [PubMed] [Google Scholar]
- Rimmer S. J., Akerman C. L., Hunt T. C., Church M. K., Holgate S. T., Shute J. K. Density profile of bronchoalveolar lavage eosinophils in the guinea pig model of allergen-induced late-phase allergic responses. Am J Respir Cell Mol Biol. 1992 Mar;6(3):340–348. doi: 10.1165/ajrcmb/6.3.340. [DOI] [PubMed] [Google Scholar]
- Sedgwick J. B., Calhoun W. J., Vrtis R. F., Bates M. E., McAllister P. K., Busse W. W. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J Immunol. 1992 Dec 1;149(11):3710–3718. [PubMed] [Google Scholar]
- Triggiani M., Oriente A., Marone G. Differential roles for triglyceride and phospholipid pools of arachidonic acid in human lung macrophages. J Immunol. 1994 Feb 1;152(3):1394–1403. [PubMed] [Google Scholar]
- Triggiani M., Schleimer R. P., Warner J. A., Chilton F. H. Differential synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine and platelet-activating factor by human inflammatory cells. J Immunol. 1991 Jul 15;147(2):660–666. [PubMed] [Google Scholar]
- Weller P. F., Dvorak A. M. Lipid bodies: intracellular sites for eicosanoid formation. J Allergy Clin Immunol. 1994 Dec;94(6 Pt 2):1151–1156. doi: 10.1016/0091-6749(94)90325-5. [DOI] [PubMed] [Google Scholar]
- Weller P. F., Monahan-Earley R. A., Dvorak H. F., Dvorak A. M. Cytoplasmic lipid bodies of human eosinophils. Subcellular isolation and analysis of arachidonate incorporation. Am J Pathol. 1991 Jan;138(1):141–148. [PMC free article] [PubMed] [Google Scholar]
- Weller P. F., Ryeom S. W., Picard S. T., Ackerman S. J., Dvorak A. M. Cytoplasmic lipid bodies of neutrophils: formation induced by cis-unsaturated fatty acids and mediated by protein kinase C. J Cell Biol. 1991 Apr;113(1):137–146. doi: 10.1083/jcb.113.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods J. W., Evans J. F., Ethier D., Scott S., Vickers P. J., Hearn L., Heibein J. A., Charleson S., Singer I. I. 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med. 1993 Dec 1;178(6):1935–1946. doi: 10.1084/jem.178.6.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Groot M. J., Coumans W. A., Willemsen P. H., van der Vusse G. J. Substrate-induced changes in the lipid content of ischemic and reperfused myocardium. Its relation to hemodynamic recovery. Circ Res. 1993 Jan;72(1):176–186. doi: 10.1161/01.res.72.1.176. [DOI] [PubMed] [Google Scholar]