Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Nov 1;182(5):1201–1212. doi: 10.1084/jem.182.5.1201

Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class I-expressing neurons in vivo

PMCID: PMC2192211  PMID: 7595191

Abstract

Neurons have evolved strategies to evade immune surveillance that include an inability to synthesize the heavy chain of the class I major histocompatibility complex (MHC), proteins that are necessary for cytotoxic T lymphocyte (CTL) recognition of target cells. Multiple viruses have taken advantage of the lack of CTL-mediated recognition and killing of neurons by establishing persistent neuronal infections and thereby escaping attack by antiviral CTL. We have expressed a class I MHC molecule (Db) in neurons of transgenic mice using the neuron- specific enolase (NSE) promoter to determine the pathogenic consequences of CTL recognition of virally infected, MHC-expressing central nervous system (CNS) neurons. The NSE-Db transgene was expressed in H-2b founder mice, and transgene-derived messenger RNA was detected by reverse transcriptase-polymerase chain reaction in transgenic brains from several lines. Purified primary neurons from transgenic but not from nontransgenic mice adhered to coverslips coated with a conformation-dependent monoclonal antibody directed against the Dv molecule and presented viral peptide to CTL in an MHC-restricted manner, indicating that the Db molecule was expressed on transgenic neurons in a functional form. Transgenic mice infected with the neurotropic lymphocytic choriomeningitis virus (LCMV) and given anti- LCMV, MHC-restricted CTL displayed a high morbidity and mortality when compared with controls receiving MHC-mismatched CTL or expressing alternative transgenes. After CTL transfer, transgenic brains showed an increased number of CD8+ cells compared with nontransgenic controls as well as an increased rate of clearance of infectious virus from the CNS. Additionally, an increase in blood-brain barrier permeability was detected during viral clearance in NSE-Db transgenic mice and lasted several months after clearance of virus from neurons. In contrast, LCMV- infected, nontransgenic littermates and mice expressing other gene products from the NSE promoter showed no CNS disease, no increased intraparenchymal CTL, and no blood-brain barrier damage after the adoptive transfer of antiviral CTL. Our study indicates that viral infections and CTL-CNS interactions may induce blood-brain barrier disruptions and neurologic disease by a "hit-and-run" mechanism, triggering a cascade of pathogenic events that proceeds in the absence of continual viral stimulation.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham C. R., Kanemaru K., Mucke L. Expression of cathepsin G-like and alpha 1-antichymotrypsin-like proteins in reactive astrocytes. Brain Res. 1993 Sep 10;621(2):222–232. doi: 10.1016/0006-8993(93)90110-9. [DOI] [PubMed] [Google Scholar]
  2. Allen H., Fraser J., Flyer D., Calvin S., Flavell R. Beta 2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated H-2Db. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7447–7451. doi: 10.1073/pnas.83.19.7447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen I. H., Marker O., Thomsen A. R. Breakdown of blood-brain barrier function in the murine lymphocytic choriomeningitis virus infection mediated by virus-specific CD8+ T cells. J Neuroimmunol. 1991 Feb;31(2):155–163. doi: 10.1016/0165-5728(91)90021-x. [DOI] [PubMed] [Google Scholar]
  4. Bartlett P. F., Kerr R. S., Bailey K. A. Expression of MHC antigens in the central nervous system. Transplant Proc. 1989 Feb;21(1 Pt 3):3163–3165. [PubMed] [Google Scholar]
  5. Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  6. Campbell I. L., Abraham C. R., Masliah E., Kemper P., Inglis J. D., Oldstone M. B., Mucke L. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10061–10065. doi: 10.1073/pnas.90.21.10061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chaturvedi U. C., Dhawan R., Khanna M., Mathur A. Breakdown of the blood-brain barrier during dengue virus infection of mice. J Gen Virol. 1991 Apr;72(Pt 4):859–866. doi: 10.1099/0022-1317-72-4-859. [DOI] [PubMed] [Google Scholar]
  8. Drew P. D., Lonergan M., Goldstein M. E., Lampson L. A., Ozato K., McFarlin D. E. Regulation of MHC class I and beta 2-microglobulin gene expression in human neuronal cells. Factor binding to conserved cis-acting regulatory sequences correlates with expression of the genes. J Immunol. 1993 Apr 15;150(8 Pt 1):3300–3310. [PubMed] [Google Scholar]
  9. Dutko F. J., Oldstone M. B. Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. J Gen Virol. 1983 Aug;64(Pt 8):1689–1698. doi: 10.1099/0022-1317-64-8-1689. [DOI] [PubMed] [Google Scholar]
  10. Fazakerley J. K., Southern P., Bloom F., Buchmeier M. J. High resolution in situ hybridization to determine the cellular distribution of lymphocytic choriomeningitis virus RNA in the tissues of persistently infected mice: relevance to arenavirus disease and mechanisms of viral persistence. J Gen Virol. 1991 Jul;72(Pt 7):1611–1625. doi: 10.1099/0022-1317-72-7-1611. [DOI] [PubMed] [Google Scholar]
  11. Gilles P. N., Fey G., Chisari F. V. Tumor necrosis factor alpha negatively regulates hepatitis B virus gene expression in transgenic mice. J Virol. 1992 Jun;66(6):3955–3960. doi: 10.1128/jvi.66.6.3955-3960.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenwood J. Mechanisms of blood-brain barrier breakdown. Neuroradiology. 1991;33(2):95–100. doi: 10.1007/BF00588242. [DOI] [PubMed] [Google Scholar]
  13. Guidotti L. G., Ando K., Hobbs M. V., Ishikawa T., Runkel L., Schreiber R. D., Chisari F. V. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3764–3768. doi: 10.1073/pnas.91.9.3764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guilhot S., Guidotti L. G., Chisari F. V. Interleukin-2 downregulates hepatitis B virus gene expression in transgenic mice by a posttranscriptional mechanism. J Virol. 1993 Dec;67(12):7444–7449. doi: 10.1128/jvi.67.12.7444-7449.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hickey W. F., Hsu B. L., Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991 Feb;28(2):254–260. doi: 10.1002/jnr.490280213. [DOI] [PubMed] [Google Scholar]
  16. Hickey W. F., Kimura H. Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2082–2086. doi: 10.1073/pnas.84.7.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hsueh F. W., Walker C. M., Blackbourn D. J., Levy J. A. Suppression of HIV replication by CD8+ cell clones derived from HIV-infected and uninfected individuals. Cell Immunol. 1994 Dec;159(2):271–279. doi: 10.1006/cimm.1994.1313. [DOI] [PubMed] [Google Scholar]
  18. Joly E., Mucke L., Oldstone M. B. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science. 1991 Sep 13;253(5025):1283–1285. doi: 10.1126/science.1891717. [DOI] [PubMed] [Google Scholar]
  19. Joly E., Oldstone M. B. Neuronal cells are deficient in loading peptides onto MHC class I molecules. Neuron. 1992 Jun;8(6):1185–1190. doi: 10.1016/0896-6273(92)90138-4. [DOI] [PubMed] [Google Scholar]
  20. Keane R. W., Tallent M. W., Podack E. R. Resistance and susceptibility of neural cells to lysis by cytotoxic lymphocytes and by cytolytic granules. Transplantation. 1992 Sep;54(3):520–526. doi: 10.1097/00007890-199209000-00025. [DOI] [PubMed] [Google Scholar]
  21. Lampson L. A., Fisher C. A. Weak HLA and beta 2-microglobulin expression of neuronal cell lines can be modulated by interferon. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6476–6480. doi: 10.1073/pnas.81.20.6476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lawrence J. M., Morris R. J., Wilson D. J., Raisman G. Mechanisms of allograft rejection in the rat brain. Neuroscience. 1990;37(2):431–462. doi: 10.1016/0306-4522(90)90413-x. [DOI] [PubMed] [Google Scholar]
  23. MacLeish P. R., Barnstable C. J., Townes-Anderson E. Use of a monoclonal antibody as a substrate for mature neurons in vitro. Proc Natl Acad Sci U S A. 1983 Nov;80(22):7014–7018. doi: 10.1073/pnas.80.22.7014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Massa P. T., Ozato K., McFarlin D. E. Cell type-specific regulation of major histocompatibility complex (MHC) class I gene expression in astrocytes, oligodendrocytes, and neurons. Glia. 1993 Jul;8(3):201–207. doi: 10.1002/glia.440080307. [DOI] [PubMed] [Google Scholar]
  25. Mathur A., Khanna N., Chaturvedi U. C. Breakdown of blood-brain barrier by virus-induced cytokine during Japanese encephalitis virus infection. Int J Exp Pathol. 1992 Oct;73(5):603–611. [PMC free article] [PubMed] [Google Scholar]
  26. Medawar P. Transplantation biology: an appraisal. Mt Sinai J Med. 1974 Nov-Dec;41(6):760–764. [PubMed] [Google Scholar]
  27. Mucke L., Oldstone M. B., Morris J. C., Nerenberg M. I. Rapid activation of astrocyte-specific expression of GFAP-lacZ transgene by focal injury. New Biol. 1991 May;3(5):465–474. [PubMed] [Google Scholar]
  28. Mucke L., Oldstone M. B. The expression of major histocompatibility complex (MHC) class I antigens in the brain differs markedly in acute and persistent infections with lymphocytic choriomeningitis virus (LCMV). J Neuroimmunol. 1992 Feb;36(2-3):193–198. doi: 10.1016/0165-5728(92)90050-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ogino M., Tatum A. H., Latov N. Affinity studies of human anti-MAG antibodies in neuropathy. J Neuroimmunol. 1994 Jun;52(1):41–46. doi: 10.1016/0165-5728(94)90160-0. [DOI] [PubMed] [Google Scholar]
  30. Oldstone M. B., Ahmed R., Buchmeier M. J., Blount P., Tishon A. Perturbation of differentiated functions during viral infection in vivo. I. Relationship of lymphocytic choriomeningitis virus and host strains to growth hormone deficiency. Virology. 1985 Apr 15;142(1):158–174. doi: 10.1016/0042-6822(85)90430-1. [DOI] [PubMed] [Google Scholar]
  31. Oldstone M. B., Blount P., Southern P. J., Lampert P. W. Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature. 1986 May 15;321(6067):239–243. doi: 10.1038/321239a0. [DOI] [PubMed] [Google Scholar]
  32. Oldstone M. B., Nerenberg M., Southern P., Price J., Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell. 1991 Apr 19;65(2):319–331. doi: 10.1016/0092-8674(91)90165-u. [DOI] [PubMed] [Google Scholar]
  33. Oldstone M. B., Southern P. J. Trafficking of activated cytotoxic T lymphocytes into the central nervous system: use of a transgenic model. J Neuroimmunol. 1993 Jul;46(1-2):25–31. doi: 10.1016/0165-5728(93)90230-V. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pasick J. M., Kalicharran K., Dales S. Distribution and trafficking of JHM coronavirus structural proteins and virions in primary neurons and the OBL-21 neuronal cell line. J Virol. 1994 May;68(5):2915–2928. doi: 10.1128/jvi.68.5.2915-2928.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Power C., Kong P. A., Crawford T. O., Wesselingh S., Glass J. D., McArthur J. C., Trapp B. D. Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Ann Neurol. 1993 Sep;34(3):339–350. doi: 10.1002/ana.410340307. [DOI] [PubMed] [Google Scholar]
  36. Rodriguez M., Buchmeier M. J., Oldstone M. B., Lampert P. W. Ultrastructural localization of viral antigens in the CNS of mice persistently infected with lymphocytic choriomeningitis virus (LCMV). Am J Pathol. 1983 Jan;110(1):95–100. [PMC free article] [PubMed] [Google Scholar]
  37. Ryder E. F., Snyder E. Y., Cepko C. L. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J Neurobiol. 1990 Mar;21(2):356–375. doi: 10.1002/neu.480210209. [DOI] [PubMed] [Google Scholar]
  38. Sakimura K., Kushiya E., Takahashi Y., Suzuki Y. The structure and expression of neuron-specific enolase gene. Gene. 1987;60(1):103–113. doi: 10.1016/0378-1119(87)90218-6. [DOI] [PubMed] [Google Scholar]
  39. Sharief M. K., Noori M. A., Ciardi M., Cirelli A., Thompson E. J. Increased levels of circulating ICAM-1 in serum and cerebrospinal fluid of patients with active multiple sclerosis. Correlation with TNF-alpha and blood-brain barrier damage. J Neuroimmunol. 1993 Mar;43(1-2):15–21. doi: 10.1016/0165-5728(93)90070-f. [DOI] [PubMed] [Google Scholar]
  40. Soilu-Hänninen M., Erälinna J. P., Hukkanen V., Röyttä M., Salmi A. A., Salonen R. Semliki Forest virus infects mouse brain endothelial cells and causes blood-brain barrier damage. J Virol. 1994 Oct;68(10):6291–6298. doi: 10.1128/jvi.68.10.6291-6298.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Streilein J. W. Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments. Curr Opin Immunol. 1993 Jun;5(3):428–432. doi: 10.1016/0952-7915(93)90064-y. [DOI] [PubMed] [Google Scholar]
  42. Tishon A., Eddleston M., de la Torre J. C., Oldstone M. B. Cytotoxic T lymphocytes cleanse viral gene products from individually infected neurons and lymphocytes in mice persistently infected with lymphocytic choriomeningitis virus. Virology. 1993 Nov;197(1):463–467. doi: 10.1006/viro.1993.1613. [DOI] [PubMed] [Google Scholar]
  43. Watts R. G., Wright J. L., Atkinson L. L., Merchant R. E. Histopathological and blood-brain barrier changes in rats induced by an intracerebral injection of human recombinant interleukin 2. Neurosurgery. 1989 Aug;25(2):202–208. doi: 10.1097/00006123-198908000-00008. [DOI] [PubMed] [Google Scholar]
  44. Wekerle H., Sun D., Oropeza-Wekerle R. L., Meyermann R. Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells. J Exp Biol. 1987 Sep;132:43–57. doi: 10.1242/jeb.132.1.43. [DOI] [PubMed] [Google Scholar]
  45. Whitton J. L., Gebhard J. R., Lewicki H., Tishon A., Oldstone M. B. Molecular definition of a major cytotoxic T-lymphocyte epitope in the glycoprotein of lymphocytic choriomeningitis virus. J Virol. 1988 Mar;62(3):687–695. doi: 10.1128/jvi.62.3.687-695.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Whitton J. L., Tishon A., Lewicki H., Gebhard J., Cook T., Salvato M., Joly E., Oldstone M. B. Molecular analyses of a five-amino-acid cytotoxic T-lymphocyte (CTL) epitope: an immunodominant region which induces nonreciprocal CTL cross-reactivity. J Virol. 1989 Oct;63(10):4303–4310. doi: 10.1128/jvi.63.10.4303-4310.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES