Abstract
Type C retroviruses endogenous to various nonprimate species can infect human cells in vitro, yet the transmission of these viruses to humans is restricted. This has been attributed to direct binding of the complement component C1q to the viral envelope protein p15E, which leads to classical pathway-mediated virolysis in human serum. Here we report a novel mechanism of complement-mediated type C retrovirus inactivation that is initiated by the binding of "natural antibody" [Ab] (anti-alpha-galactosyl Ab) to the carbohydrate epitope Gal alpha 1- 3Gal beta 1-4GlcNAc-R expressed on the retroviral envelope. Complement- mediated inactivation of amphotropic retroviral particles was found to be restricted to human and other Old World primate sera, which parallels the presence of anti-alpha-galactosyl natural Ab. Blockade or depletion of anti-alpha-galactosyl Ab in human serum prevented inactivation of both amphotropic and ecotropic murine retroviruses. Similarly, retrovirus was not killed by New World primate serum except in the presence of exogenous anti-alpha-galactosyl Ab. Enzyme-linked immunosorbent assays revealed that the alpha-galactosyl epitope was expressed on the surface of amphotropic and ecotropic retroviruses, and Western blot analysis further localized this epitope to the retroviral envelope glycoprotein gp70. Finally, down-regulation of this epitope on the surface of murine retroviral particle producer cells rendered them, as well as the particles liberated from these cells, resistant to inactivation by human serum complement. Our data suggest that anti- alpha-galactosyl Ab may provide a barrier for the horizontal transmission of retrovirus from species that express the alpha- galactosyl epitope to humans and to other Old World primates. Further, these data provide a mechanism for the generation of complement- resistant retroviral vectors for in vivo gene therapy applications where exposure to human complement is unavoidable.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaronson S. A., Todaro G. J. Transformation and virus growth by murine sarcoma viruses in human cells. Nature. 1970 Jan 31;225(5231):458–459. doi: 10.1038/225458a0. [DOI] [PubMed] [Google Scholar]
- Almeida I. C., Milani S. R., Gorin P. A., Travassos L. R. Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J Immunol. 1991 Apr 1;146(7):2394–2400. [PubMed] [Google Scholar]
- Banapour B., Sernatinger J., Levy J. A. The AIDS-associated retrovirus is not sensitive to lysis or inactivation by human serum. Virology. 1986 Jul 15;152(1):268–271. doi: 10.1016/0042-6822(86)90392-2. [DOI] [PubMed] [Google Scholar]
- Barbacid M., Bolognesi D., Aaronson S. A. Humans have antibodies capable of recognizing oncoviral glycoproteins: demonstration that these antibodies are formed in response to cellular modification of glycoproteins rather than as consequence of exposure to virus. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1617–1621. doi: 10.1073/pnas.77.3.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartholomew R. M., Esser A. F. Mechanism of antibody-independent activation of the first component of complement (Cl) on retrovirus membranes. Biochemistry. 1980 Jun 24;19(13):2847–2853. doi: 10.1021/bi00554a005. [DOI] [PubMed] [Google Scholar]
- Bartholomew R. M., Esser A. F., Müller-Eberhard H. J. Lysis of oncornaviruses by human serum. Isolation of the viral complement (C1) receptor and identification as p15E. J Exp Med. 1978 Mar 1;147(3):844–853. doi: 10.1084/jem.147.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper N. R., Jensen F. C., Welsh R. M., Jr, Oldstone M. B. Lysis of RNA tumor viruses by human serum: direct antibody-independent triggering of the classical complement pathway. J Exp Med. 1976 Oct 1;144(4):970–984. doi: 10.1084/jem.144.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornetta K., Moen R. C., Culver K., Morgan R. A., McLachlin J. R., Sturm S., Selegue J., London W., Blaese R. M., Anderson W. F. Amphotropic murine leukemia retrovirus is not an acute pathogen for primates. Hum Gene Ther. 1990 Spring;1(1):15–30. doi: 10.1089/hum.1990.1.1-15. [DOI] [PubMed] [Google Scholar]
- Cornetta K., Morgan R. A., Anderson W. F. Safety issues related to retroviral-mediated gene transfer in humans. Hum Gene Ther. 1991 Spring;2(1):5–14. doi: 10.1089/hum.1991.2.1-5. [DOI] [PubMed] [Google Scholar]
- Donahue R. E., Kessler S. W., Bodine D., McDonagh K., Dunbar C., Goodman S., Agricola B., Byrne E., Raffeld M., Moen R. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med. 1992 Oct 1;176(4):1125–1135. doi: 10.1084/jem.176.4.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Famulari N. G. Murine leukemia viruses with recombinant env genes: a discussion of their role in leukemogenesis. Curr Top Microbiol Immunol. 1983;103:75–108. doi: 10.1007/978-3-642-68943-7_4. [DOI] [PubMed] [Google Scholar]
- Galili U., Clark M. R., Shohet S. B., Buehler J., Macher B. A. Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1----3Gal epitope in primates. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1369–1373. doi: 10.1073/pnas.84.5.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galili U. Evolution and pathophysiology of the human natural anti-alpha-galactosyl IgG (anti-Gal) antibody. Springer Semin Immunopathol. 1993;15(2-3):155–171. doi: 10.1007/BF00201098. [DOI] [PubMed] [Google Scholar]
- Galili U., Macher B. A., Buehler J., Shohet S. B. Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1----3)-linked galactose residues. J Exp Med. 1985 Aug 1;162(2):573–582. doi: 10.1084/jem.162.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galili U., Mandrell R. E., Hamadeh R. M., Shohet S. B., Griffiss J. M. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988 Jul;56(7):1730–1737. doi: 10.1128/iai.56.7.1730-1737.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galili U., Rachmilewitz E. A., Peleg A., Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. 1984 Nov 1;160(5):1519–1531. doi: 10.1084/jem.160.5.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galili U., Shohet S. B., Kobrin E., Stults C. L., Macher B. A. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem. 1988 Nov 25;263(33):17755–17762. [PubMed] [Google Scholar]
- Galili U., Swanson K. Gene sequences suggest inactivation of alpha-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7401–7404. doi: 10.1073/pnas.88.16.7401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galili U. The natural anti-Gal antibody, the B-like antigen, and human red cell aging. Blood Cells. 1988;14(1):205–228. [PubMed] [Google Scholar]
- Geyer R., Geyer H., Stirm S., Hunsmann G., Schneider J., Dabrowski U., Dabrowski J. Major oligosaccharides in the glycoprotein of Friend murine leukemia virus: structure elucidation by one- and two-dimensional proton nuclear magnetic resonance and methylation analysis. Biochemistry. 1984 Nov 6;23(23):5628–5637. doi: 10.1021/bi00318a038. [DOI] [PubMed] [Google Scholar]
- Goochee C. F., Gramer M. J., Andersen D. C., Bahr J. B., Rasmussen J. R. The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology (N Y) 1991 Dec;9(12):1347–1355. doi: 10.1038/nbt1291-1347. [DOI] [PubMed] [Google Scholar]
- Hamadeh R. M., Jarvis G. A., Galili U., Mandrell R. E., Zhou P., Griffiss J. M. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest. 1992 Apr;89(4):1223–1235. doi: 10.1172/JCI115706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoshino H., Tanaka H., Miwa M., Okada H. Human T-cell leukaemia virus is not lysed by human serum. 1984 Jul 26-Aug 1Nature. 310(5975):324–325. doi: 10.1038/310324a0. [DOI] [PubMed] [Google Scholar]
- JENSEN F. C., GIRARDI A. J., GILDEN R. V., KOPROWSKI H. INFECTION OF HUMAN AND SIMIAN TISSUE CULTURES WITH ROUS SARCOMA VIRUS. Proc Natl Acad Sci U S A. 1964 Jul;52:53–59. doi: 10.1073/pnas.52.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jolly D. Viral vector systems for gene therapy. Cancer Gene Ther. 1994 Mar;1(1):51–64. [PubMed] [Google Scholar]
- Joziasse D. H., Shaper J. H., Van den Eijnden D. H., Van Tunen A. J., Shaper N. L. Bovine alpha 1----3-galactosyltransferase: isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA. J Biol Chem. 1989 Aug 25;264(24):14290–14297. [PubMed] [Google Scholar]
- Larsen R. D., Ernst L. K., Nair R. P., Lowe J. B. Molecular cloning, sequence, and expression of a human GDP-L-fucose:beta-D-galactoside 2-alpha-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6674–6678. doi: 10.1073/pnas.87.17.6674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen R. D., Rivera-Marrero C. A., Ernst L. K., Cummings R. D., Lowe J. B. Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:beta-D-Gal(1,4)-D-GlcNAc alpha(1,3)-galactosyltransferase cDNA. J Biol Chem. 1990 Apr 25;265(12):7055–7061. [PubMed] [Google Scholar]
- Löwer J., Davidson E. A., Teich N. M., Weiss R. A., Joseph A. P., Kurth R. Heterophil human antibodies recognize oncovirus envelope antigens: epidemiological parameters and immunological specificity of the reaction. Virology. 1981 Mar;109(2):409–417. doi: 10.1016/0042-6822(81)90511-0. [DOI] [PubMed] [Google Scholar]
- Markowitz D., Goff S., Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol. 1988 Apr;62(4):1120–1124. doi: 10.1128/jvi.62.4.1120-1124.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller A. D., Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986 Aug;6(8):2895–2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
- Neethling F. A., Koren E., Ye Y., Richards S. V., Kujundzic M., Oriol R., Cooper D. K. Protection of pig kidney (PK15) cells from the cytotoxic effect of anti-pig antibodies by alpha-galactosyl oligosaccharides. Transplantation. 1994 Mar 27;57(6):959–963. doi: 10.1097/00007890-199403270-00032. [DOI] [PubMed] [Google Scholar]
- Rasheed S., Gardner M. B., Chan E. Amphotropic host range of naturally occuring wild mouse leukemia viruses. J Virol. 1976 Jul;19(1):13–18. doi: 10.1128/jvi.19.1.13-18.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rein A. Interference grouping of murine leukemia viruses: a distinct receptor for the MCF-recombinant viruses in mouse cells. Virology. 1982 Jul 15;120(1):251–257. doi: 10.1016/0042-6822(82)90024-1. [DOI] [PubMed] [Google Scholar]
- Repik P. M., Strizki J. M., Galili U. Differential host-dependent expression of alpha-galactosyl epitopes on viral glycoproteins: a study of eastern equine encephalitis virus as a model. J Gen Virol. 1994 May;75(Pt 5):1177–1181. doi: 10.1099/0022-1317-75-5-1177. [DOI] [PubMed] [Google Scholar]
- Rother R. P., Squinto S. P., Mason J. M., Rollins S. A. Protection of retroviral vector particles in human blood through complement inhibition. Hum Gene Ther. 1995 Apr;6(4):429–435. doi: 10.1089/hum.1995.6.4-429. [DOI] [PubMed] [Google Scholar]
- Sandrin M. S., Vaughan H. A., Dabkowski P. L., McKenzie I. F. Anti-pig IgM antibodies in human serum react predominantly with Gal(alpha 1-3)Gal epitopes. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11391–11395. doi: 10.1073/pnas.90.23.11391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherwin S. A., Benveniste R. E., Todaro G. J. Complement-mediated lysis of type-C virus: effect of primate and human sera on various retroviruses. Int J Cancer. 1978 Jan 15;21(1):6–11. doi: 10.1002/ijc.2910210103. [DOI] [PubMed] [Google Scholar]
- Snyder H. W., Jr, Fleissner E. Specificity of human antibodies to oncovirus glycoproteins: recognition of antigen by natural antibodies directed against carbohydrate structures. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1622–1626. doi: 10.1073/pnas.77.3.1622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spear G. T., Jiang H. X., Sullivan B. L., Gewurz H., Landay A. L., Lint T. F. Direct binding of complement component C1q to human immunodeficiency virus (HIV) and human T lymphotrophic virus-I (HTLV-I) coinfected cells. AIDS Res Hum Retroviruses. 1991 Jul;7(7):579–585. doi: 10.1089/aid.1991.7.579. [DOI] [PubMed] [Google Scholar]
- Takeuchi Y., Cosset F. L., Lachmann P. J., Okada H., Weiss R. A., Collins M. K. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J Virol. 1994 Dec;68(12):8001–8007. doi: 10.1128/jvi.68.12.8001-8007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teich N. M., Weiss R. A., Salahuddin S. Z., Gallagher R. E., Gillespie D. H., Gallo R. C. Infective transmission and characterisation of a C-type virus released by cultured human myeloid leukaemia cells. Nature. 1975 Aug 14;256(5518):551–555. doi: 10.1038/256551a0. [DOI] [PubMed] [Google Scholar]
- Thiry L., Cogniaux-Le Clerc J., Content J., Tack L. Factors which influence inactivation of vesicular stomatitis virus by fresh human serum. Virology. 1978 Jun 15;87(2):384–393. doi: 10.1016/0042-6822(78)90142-3. [DOI] [PubMed] [Google Scholar]
- Tsichlis P. N., Lazo P. A. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol. 1991;171:95–171. doi: 10.1007/978-3-642-76524-7_5. [DOI] [PubMed] [Google Scholar]
- Tsichlis P. N. Oncogenesis by Moloney murine leukemia virus. Anticancer Res. 1987 Mar-Apr;7(2):171–180. [PubMed] [Google Scholar]
- Vaughan H. A., Loveland B. E., Sandrin M. S. Gal alpha(1,3)Gal is the major xenoepitope expressed on pig endothelial cells recognized by naturally occurring cytotoxic human antibodies. Transplantation. 1994 Oct 27;58(8):879–882. doi: 10.1097/00007890-199410270-00003. [DOI] [PubMed] [Google Scholar]
- Welsh R. M. Host cell modification of lymphocytic choriomeningitis virus and Newcastle disease virus altering viral inactivation by human complement. J Immunol. 1977 Jan;118(1):348–354. [PubMed] [Google Scholar]
- Welsh R. M., Jr, Cooper N. R., Jensen F. C., Oldstone M. B. Human serum lyses RNA tumour viruses. Nature. 1975 Oct 16;257(5527):612–614. doi: 10.1038/257612a0. [DOI] [PubMed] [Google Scholar]
- Welsh R. M., Jr, Jensen F. C., Cooper N. R., Oldstone M. B. Inactivation of lysis of oncornaviruses by human serum. Virology. 1976 Oct 15;74(2):432–440. doi: 10.1016/0042-6822(76)90349-4. [DOI] [PubMed] [Google Scholar]
- Wood C., Kabat E. A., Murphy L. A., Goldstein I. J. Immunochemical studies of the combining sites of the two isolectins, A4 and B4, isolated from Bandeiraea simplicifolia. Arch Biochem Biophys. 1979 Nov;198(1):1–11. doi: 10.1016/0003-9861(79)90389-8. [DOI] [PubMed] [Google Scholar]