Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Sep;163(3):938–942. doi: 10.1128/jb.163.3.938-942.1985

Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.

E Shaibe, E Metzer, Y S Halpern
PMCID: PMC219223  PMID: 3897202

Abstract

The regulation of the synthesis of the enzymes involved in the utilization of L-arginine, L-ornithine, agmatine, and putrescine as a sole nitrogen source in Escherichia coli K-12 was examined. The synthesis of agmatine ureohydrolase, putrescine aminotransferase, and pyrroline dehydrogenase is dually controlled by catabolite repression and nitrogen availability. Catabolite repression of agmatine ureohydrolase, but not that of putrescine aminotransferase or pyrroline dehydrogenase, is relieved by the addition of cAMP. Agmatine ureohydrolase synthesis in addition is subject to induction by L-arginine and agmatine. Arginine decarboxylase and ornithine decarboxylase synthesis is not sensitive to catabolite repression or to stimulation by nitrogen limitation or subject to substrate induction.

Full text

PDF
938

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artman M., Werthamer S. Use of streptomycin and cyclic adenosine 5'-monophosphate in the isolation of mutants deficient in CAP protein. J Bacteriol. 1974 Oct;120(1):542–544. doi: 10.1128/jb.120.1.542-544.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyle S. M., Adachi K. Biosynthetic ornithine and arginine decarboxylases: correlation of rates of synthesis with activities in Escherichia coli during exponential growth and following nutritional shift-up. Can J Microbiol. 1982 Aug;28(8):945–950. doi: 10.1139/m82-142. [DOI] [PubMed] [Google Scholar]
  3. Cunningham-Rundles S., Maas W. K. Isolation, characterization, and mapping of Escherichia coli mutants blocked in the synthesis of ornithine decarboxylase. J Bacteriol. 1975 Nov;124(2):791–799. doi: 10.1128/jb.124.2.791-799.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Crombrugghe B., Perlman R. L., Varmus H. E., Pastan I. Regulation of inducible enzyme synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate. J Biol Chem. 1969 Nov 10;244(21):5828–5835. [PubMed] [Google Scholar]
  5. Dover S., Halpern Y. S. Novel type of catabolite repression in the pathway of gamma-aminobutyrate breakdown in Escherichia coli K-12. FEBS Lett. 1973 Dec 1;37(2):207–211. doi: 10.1016/0014-5793(73)80460-0. [DOI] [PubMed] [Google Scholar]
  6. Emmer M., deCrombrugghe B., Pastan I., Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci U S A. 1970 Jun;66(2):480–487. doi: 10.1073/pnas.66.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedrich B., Magasanik B. Enzymes of agmatine degradation and the control of their synthesis in Klebsiella aerogenes. J Bacteriol. 1979 Mar;137(3):1127–1133. doi: 10.1128/jb.137.3.1127-1133.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Friedrich B., Magasanik B. Utilization of arginine by Klebsiella aerogenes. J Bacteriol. 1978 Feb;133(2):680–685. doi: 10.1128/jb.133.2.680-685.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hafner E. W., Tabor C. W., Tabor H. Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. J Biol Chem. 1979 Dec 25;254(24):12419–12426. [PubMed] [Google Scholar]
  10. Heller J. S., Rostomily R., Kyriakidis D. A., Canellakis E. S. Regulation of polyamine biosynthesis in Escherichia coli by basic proteins. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5181–5184. doi: 10.1073/pnas.80.17.5181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JAKOBY W. B., FREDERICKS J. Pyrrolidine and putrescine metabolism: gamma-aminobutyraldehyde dehydrogenase. J Biol Chem. 1959 Aug;234(8):2145–2150. [PubMed] [Google Scholar]
  12. MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
  13. Maas W. K. Mapping of genes involved in the synthesis of spermidine in Escherichia coli. Mol Gen Genet. 1972;119(1):1–9. doi: 10.1007/BF00270439. [DOI] [PubMed] [Google Scholar]
  14. Magasanik B. Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet. 1982;16:135–168. doi: 10.1146/annurev.ge.16.120182.001031. [DOI] [PubMed] [Google Scholar]
  15. Metzer E., Levitz R., Halpern Y. S. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate. J Bacteriol. 1979 Mar;137(3):1111–1118. doi: 10.1128/jb.137.3.1111-1118.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morris D. R., Koffron K. L. Putrescine biosynthesis in Escherichia coli. Regulation through pathway selection. J Biol Chem. 1969 Nov 25;244(22):6094–6099. [PubMed] [Google Scholar]
  17. NEIDHARDT F. C., MAGASANIK B. Reversal of the glucose inhibition of histidase biosynthesis in Aerobacter aerogenes. J Bacteriol. 1957 Feb;73(2):253–259. doi: 10.1128/jb.73.2.253-259.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perlman R. L., Pastan I. Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. Biochem Biophys Res Commun. 1969 Sep 24;37(1):151–157. doi: 10.1016/0006-291x(69)90893-6. [DOI] [PubMed] [Google Scholar]
  19. Prival M. J., Brenchley J. E., Magasanik B. Glutamine synthetase and the regulation of histidase formation in Klebsiella aerogenes. J Biol Chem. 1973 Jun 25;248(12):4334–4344. [PubMed] [Google Scholar]
  20. Satishchandran C., Boyle S. M. Antagonistic transcriptional regulation of the putrescine biosynthetic enzyme agmatine ureohydrolase by cyclic AMP and agmatine in Escherichia coli. J Bacteriol. 1984 Feb;157(2):552–559. doi: 10.1128/jb.157.2.552-559.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shaibe E., Metzer E., Halpern Y. S. Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol. 1985 Sep;163(3):933–937. doi: 10.1128/jb.163.3.933-937.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tyler B., Deleo A. B., Magasanik B. Activation of transcription of hut DNA by glutamine synthetase. Proc Natl Acad Sci U S A. 1974 Jan;71(1):225–229. doi: 10.1073/pnas.71.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wright J. M., Boyle S. M. Negative control of ornithine decarboxylase and arginine decarboxylase by adenosine-3':5'-cyclic monophosphate in Escherichia coli. Mol Gen Genet. 1982;186(4):482–487. doi: 10.1007/BF00337952. [DOI] [PubMed] [Google Scholar]
  24. Zaboura M., Halpern Y. S. Regulation of gamma-aminobutyric acid degradation in Escherichia coli by nitrogen metabolism enzymes. J Bacteriol. 1978 Feb;133(2):447–451. doi: 10.1128/jb.133.2.447-451.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES