Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Dec 1;182(6):1739–1750. doi: 10.1084/jem.182.6.1739

A rare cryptic translation product is presented by Kb major histocompatibility complex class I molecule to alloreactive T cells

PMCID: PMC2192241  PMID: 7500018

Abstract

The identity of allogeneic peptide/major histocompatibility complex (MHC) complexes that elicit vigorous T cell responses has remained an interesting problem for both practical and theoretical reasons. Although a few abundant MHC class I-bound peptides have been purified and sequenced, identifying the unique T cell-stimulating peptides from among the thousands of existing peptides is still a very difficult undertaking. In this report, we identified the antigenic peptide that is recognized by an alloreactive bm1 anti-B6 T cell clone using a novel genetic strategy that is based upon measurement of T cell receptor occupancy in single T cells. Using lacZ-inducible T cells as a probe, we screened a splenic cDNA library in transiently transfected antigen- presenting cells (APCs) and isolated a cDNA clone that allowed expression of the appropriate peptide/Kb MHC complex in APC. The antigenic octapeptide (SVVEFSSL) exactly matched the consensus Kb MHC motif, but was surprisingly encoded by a non-ATG defined translation reading frame. Furthermore, the abundance of the naturally processed analog in untransfected cells was estimated to be <10 copies per cell. These results illustrate a novel strategy for identifying T cell- stimulating antigens in general and directly show that alloreactive T cells can respond to rather rare peptide/MHC complexes. These results also suggest that the total pool of processed peptides expressed on the APC surface may include those generated by cryptic translation of normally expressed transcripts.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich C. J., DeCloux A., Woods A. S., Cotter R. J., Soloski M. J., Forman J. Identification of a Tap-dependent leader peptide recognized by alloreactive T cells specific for a class Ib antigen. Cell. 1994 Nov 18;79(4):649–658. doi: 10.1016/0092-8674(94)90550-9. [DOI] [PubMed] [Google Scholar]
  2. Boon T., Cerottini J. C., Van den Eynde B., van der Bruggen P., Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–365. doi: 10.1146/annurev.iy.12.040194.002005. [DOI] [PubMed] [Google Scholar]
  3. Boon T., Van Pel A., De Plaen E., Chomez P., Lurquin C., Szikora J. P., Sibille C., Mariamé B., Van den Eynde B., Lethé B. Genes coding for T-cell-defined tum transplantation antigens: point mutations, antigenic peptides, and subgenic expression. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):587–596. doi: 10.1101/sqb.1989.054.01.070. [DOI] [PubMed] [Google Scholar]
  4. Boon T., Van Pel A. T cell-recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis. Immunogenetics. 1989;29(2):75–79. doi: 10.1007/BF00395854. [DOI] [PubMed] [Google Scholar]
  5. Connolly J. M. The peptide p2Ca is immunodominant in allorecognition of Ld by beta chain variable region V beta 8+ but not V beta 8- strains. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11482–11486. doi: 10.1073/pnas.91.24.11482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox A. L., Skipper J., Chen Y., Henderson R. A., Darrow T. L., Shabanowitz J., Engelhard V. H., Hunt D. F., Slingluff C. L., Jr Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science. 1994 Apr 29;264(5159):716–719. doi: 10.1126/science.7513441. [DOI] [PubMed] [Google Scholar]
  7. Engelhard V. H. Structure of peptides associated with class I and class II MHC molecules. Annu Rev Immunol. 1994;12:181–207. doi: 10.1146/annurev.iy.12.040194.001145. [DOI] [PubMed] [Google Scholar]
  8. Falk K., Rötzschke O., Deres K., Metzger J., Jung G., Rammensee H. G. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med. 1991 Aug 1;174(2):425–434. doi: 10.1084/jem.174.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Falk K., Rötzschke O., Faath S., Goth S., Graef I., Shastri N., Rammensee H. G. Both human and mouse cells expressing H-2Kb and ovalbumin process the same peptide, SIINFEKL. Cell Immunol. 1993 Sep;150(2):447–452. doi: 10.1006/cimm.1993.1212. [DOI] [PubMed] [Google Scholar]
  10. Falk K., Rötzschke O., Rammensee H. G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature. 1990 Nov 15;348(6298):248–251. doi: 10.1038/348248a0. [DOI] [PubMed] [Google Scholar]
  11. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  12. Fetten J. V., Roy N., Gilboa E. A frameshift mutation at the NH2 terminus of the nucleoprotein gene does not affect generation of cytotoxic T lymphocyte epitopes. J Immunol. 1991 Oct 15;147(8):2697–2705. [PubMed] [Google Scholar]
  13. Gavin M. A., Dere B., Grandea A. G., 3rd, Hogquist K. A., Bevan M. J. Major histocompatibility complex class I allele-specific peptide libraries: identification of peptides that mimic an H-Y T cell epitope. Eur J Immunol. 1994 Sep;24(9):2124–2133. doi: 10.1002/eji.1830240929. [DOI] [PubMed] [Google Scholar]
  14. Heath W. R., Hurd M. E., Carbone F. R., Sherman L. A. Peptide-dependent recognition of H-2Kb by alloreactive cytotoxic T lymphocytes. Nature. 1989 Oct 26;341(6244):749–752. doi: 10.1038/341749a0. [DOI] [PubMed] [Google Scholar]
  15. Heath W. R., Kane K. P., Mescher M. F., Sherman L. A. Alloreactive T cells discriminate among a diverse set of endogenous peptides. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5101–5105. doi: 10.1073/pnas.88.12.5101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heemels M. T., Ploegh H. L. Substrate specificity of allelic variants of the TAP peptide transporter. Immunity. 1994 Dec;1(9):775–784. doi: 10.1016/s1074-7613(94)80019-7. [DOI] [PubMed] [Google Scholar]
  17. Henderson R. A., Cox A. L., Sakaguchi K., Appella E., Shabanowitz J., Hunt D. F., Engelhard V. H. Direct identification of an endogenous peptide recognized by multiple HLA-A2.1-specific cytotoxic T cells. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10275–10279. doi: 10.1073/pnas.90.21.10275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henderson R. A., Michel H., Sakaguchi K., Shabanowitz J., Appella E., Hunt D. F., Engelhard V. H. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science. 1992 Mar 6;255(5049):1264–1266. doi: 10.1126/science.1546329. [DOI] [PubMed] [Google Scholar]
  19. Hunt D. F., Henderson R. A., Shabanowitz J., Sakaguchi K., Michel H., Sevilir N., Cox A. L., Appella E., Engelhard V. H. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science. 1992 Mar 6;255(5049):1261–1263. doi: 10.1126/science.1546328. [DOI] [PubMed] [Google Scholar]
  20. Jardetzky T. S., Lane W. S., Robinson R. A., Madden D. R., Wiley D. C. Identification of self peptides bound to purified HLA-B27. Nature. 1991 Sep 26;353(6342):326–329. doi: 10.1038/353326a0. [DOI] [PubMed] [Google Scholar]
  21. Jerne N. K. The somatic generation of immune recognition. Eur J Immunol. 1971 Jan;1(1):1–9. doi: 10.1002/eji.1830010102. [DOI] [PubMed] [Google Scholar]
  22. Joyce S., Kuzushima K., Kepecs G., Angeletti R. H., Nathenson S. G. Characterization of an incompletely assembled major histocompatibility class I molecule (H-2Kb) associated with unusually long peptides: implications for antigen processing and presentation. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4145–4149. doi: 10.1073/pnas.91.10.4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kageyama S., Tsomides T. J., Sykulev Y., Eisen H. N. Variations in the number of peptide-MHC class I complexes required to activate cytotoxic T cell responses. J Immunol. 1995 Jan 15;154(2):567–576. [PubMed] [Google Scholar]
  24. Karttunen J., Sanderson S., Shastri N. Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6020–6024. doi: 10.1073/pnas.89.13.6020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Karttunen J., Shastri N. Measurement of ligand-induced activation in single viable T cells using the lacZ reporter gene. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3972–3976. doi: 10.1073/pnas.88.9.3972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  27. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Malarkannan S., Goth S., Buchholz D. R., Shastri N. The role of MHC class I molecules in the generation of endogenous peptide/MHC complexes. J Immunol. 1995 Jan 15;154(2):585–598. [PubMed] [Google Scholar]
  29. Mandelboim O., Berke G., Fridkin M., Feldman M., Eisenstein M., Eisenbach L. CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma. Nature. 1994 May 5;369(6475):67–71. doi: 10.1038/369067a0. [DOI] [PubMed] [Google Scholar]
  30. Matsumura M., Saito Y., Jackson M. R., Song E. S., Peterson P. A. In vitro peptide binding to soluble empty class I major histocompatibility complex molecules isolated from transfected Drosophila melanogaster cells. J Biol Chem. 1992 Nov 25;267(33):23589–23595. [PubMed] [Google Scholar]
  31. Matthias P., Müller M. M., Schreiber E., Rusconi S., Schaffner W. Eukaryotic expression vectors for the analysis of mutant proteins. Nucleic Acids Res. 1989 Aug 11;17(15):6418–6418. doi: 10.1093/nar/17.15.6418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Momburg F., Roelse J., Howard J. C., Butcher G. W., Hämmerling G. J., Neefjes J. J. Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature. 1994 Feb 17;367(6464):648–651. doi: 10.1038/367648a0. [DOI] [PubMed] [Google Scholar]
  33. Moore M. W., Carbone F. R., Bevan M. J. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell. 1988 Sep 9;54(6):777–785. doi: 10.1016/s0092-8674(88)91043-4. [DOI] [PubMed] [Google Scholar]
  34. Nathenson S. G., Geliebter J., Pfaffenbach G. M., Zeff R. A. Murine major histocompatibility complex class-I mutants: molecular analysis and structure-function implications. Annu Rev Immunol. 1986;4:471–502. doi: 10.1146/annurev.iy.04.040186.002351. [DOI] [PubMed] [Google Scholar]
  35. Powis S. J., Deverson E. V., Coadwell W. J., Ciruela A., Huskisson N. S., Smith H., Butcher G. W., Howard J. C. Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule. Nature. 1992 May 21;357(6375):211–215. doi: 10.1038/357211a0. [DOI] [PubMed] [Google Scholar]
  36. Rammensee H. G., Falk K., Rötzschke O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol. 1993;11:213–244. doi: 10.1146/annurev.iy.11.040193.001241. [DOI] [PubMed] [Google Scholar]
  37. Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994 Sep 9;78(5):761–771. doi: 10.1016/s0092-8674(94)90462-6. [DOI] [PubMed] [Google Scholar]
  38. Rötzschke O., Falk K., Faath S., Rammensee H. G. On the nature of peptides involved in T cell alloreactivity. J Exp Med. 1991 Nov 1;174(5):1059–1071. doi: 10.1084/jem.174.5.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rötzschke O., Falk K., Stevanović S., Jung G., Walden P., Rammensee H. G. Exact prediction of a natural T cell epitope. Eur J Immunol. 1991 Nov;21(11):2891–2894. doi: 10.1002/eji.1830211136. [DOI] [PubMed] [Google Scholar]
  40. Sanderson S., Shastri N. LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol. 1994 Mar;6(3):369–376. doi: 10.1093/intimm/6.3.369. [DOI] [PubMed] [Google Scholar]
  41. Schumacher T. N., Kantesaria D. V., Heemels M. T., Ashton-Rickardt P. G., Shepherd J. C., Fruh K., Yang Y., Peterson P. A., Tonegawa S., Ploegh H. L. Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J Exp Med. 1994 Feb 1;179(2):533–540. doi: 10.1084/jem.179.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shastri N., Gonzalez F. Endogenous generation and presentation of the ovalbumin peptide/Kb complex to T cells. J Immunol. 1993 Apr 1;150(7):2724–2736. [PubMed] [Google Scholar]
  43. Shastri N., Nguyen V., Gonzalez F. Major histocompatibility class I molecules can present cryptic translation products to T-cells. J Biol Chem. 1995 Jan 20;270(3):1088–1091. doi: 10.1074/jbc.270.3.1088. [DOI] [PubMed] [Google Scholar]
  44. Shastri N., Oki A., Miller A., Sercarz E. E. Distinct recognition phenotypes exist for T cell clones specific for small peptide regions of proteins. Implications for the mechanisms underlying major histocompatibility complex-restricted antigen recognition and clonal deletion models of immune response gene defects. J Exp Med. 1985 Jul 1;162(1):332–345. doi: 10.1084/jem.162.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shastri N. Single T cell probes for antigen/MHC expression. Curr Opin Immunol. 1995 Apr;7(2):258–262. doi: 10.1016/0952-7915(95)80012-3. [DOI] [PubMed] [Google Scholar]
  46. Sherman L. A., Chattopadhyay S. The molecular basis of allorecognition. Annu Rev Immunol. 1993;11:385–402. doi: 10.1146/annurev.iy.11.040193.002125. [DOI] [PubMed] [Google Scholar]
  47. Sherman L. A., Hesse S. V., Irwin M. J., La Face D., Peterson P. Selecting T cell receptors with high affinity for self-MHC by decreasing the contribution of CD8. Science. 1992 Oct 30;258(5083):815–818. doi: 10.1126/science.1439792. [DOI] [PubMed] [Google Scholar]
  48. Townsend A., Ohlén C., Rogers M., Edwards J., Mukherjee S., Bastin J. Source of unique tumour antigens. Nature. 1994 Oct 20;371(6499):662–662. doi: 10.1038/371662a0. [DOI] [PubMed] [Google Scholar]
  49. Udaka K., Tsomides T. J., Eisen H. N. A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I MHC protein. Cell. 1992 Jun 12;69(6):989–998. doi: 10.1016/0092-8674(92)90617-l. [DOI] [PubMed] [Google Scholar]
  50. Udaka K., Tsomides T. J., Walden P., Fukusen N., Eisen H. N. A ubiquitous protein is the source of naturally occurring peptides that are recognized by a CD8+ T-cell clone. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11272–11276. doi: 10.1073/pnas.90.23.11272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Uenaka A., Ono T., Akisawa T., Wada H., Yasuda T., Nakayama E. Identification of a unique antigen peptide pRL1 on BALB/c RL male 1 leukemia recognized by cytotoxic T lymphocytes and its relation to the Akt oncogene. J Exp Med. 1994 Nov 1;180(5):1599–1607. doi: 10.1084/jem.180.5.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Van Bleek G. M., Nathenson S. G. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature. 1990 Nov 15;348(6298):213–216. doi: 10.1038/348213a0. [DOI] [PubMed] [Google Scholar]
  53. Wei M. L., Cresswell P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature. 1992 Apr 2;356(6368):443–446. doi: 10.1038/356443a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES