Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Dec 1;182(6):1959–1971. doi: 10.1084/jem.182.6.1959

On the pathogenesis of atherosclerosis: enzymatic transformation of human low density lipoprotein to an atherogenic moiety

PMCID: PMC2192243  PMID: 7500042

Abstract

Combined treatment with trypsin, cholesterol esterase, and neuraminidase transforms LDL, but not HDL or VLDL, to particles with properties akin to those of lipid extracted from atherosclerotic lesions. Single or double enzyme modifications, or treatment with phospholipase C, or simple vortexing are ineffective. Triple enzyme treatment disrupts the ordered and uniform structure of LDL particles, and gives rise to the formation of inhomogeneous lipid droplets 10-200 nm in diameter with a pronounced net negative charge, but lacking significant amounts of oxidized lipid. Enzymatically modified LDL (E- LDL), but not oxidatively modified LDL (ox-LDL), is endowed with potent complement-activating capacity. As previously found for lipid isolated from atherosclerotic lesions, complement activation occurs to completion via the alternative pathway and is independent of antibody. E-LDL is rapidly taken up by human macrophages to an extent exceeding the uptake of acetylated LDL (ac-LDL) or oxidatively modified LDL. After 16 h, cholesteryl oleate ester formation induced by E-LDL (50 micrograms/ml cholesterol) was in the range of 6-10 nmol/mg protein compared with 3-6 nmol/mg induced by an equivalent amount of acetylated LDL. At this concentration, E-LDL was essentially devoid of direct cytotoxic effects. Competition experiments indicated that uptake of E- LDL was mediated in part by ox-LDL receptor(s). Thus, approximately 90% of 125I-ox-LDL degradation was inhibited by a 2-fold excess of unlabeled E-LDL. Uptake of 125I-LDL was not inhibited by E-LDL. We hypothesize that extracellular enzymatic modification may represent an important step linking subendothelial deposition of LDL to the initiation of atherosclerosis.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acton S. L., Scherer P. E., Lodish H. F., Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem. 1994 Aug 19;269(33):21003–21009. [PubMed] [Google Scholar]
  2. Armstrong V. W., Walli A. K., Seidel D. Isolation, characterization, and uptake in human fibroblasts of an apo(a)-free lipoprotein obtained on reduction of lipoprotein(a). J Lipid Res. 1985 Nov;26(11):1314–1323. [PubMed] [Google Scholar]
  3. Berliner J. A., Territo M. C., Sevanian A., Ramin S., Kim J. A., Bamshad B., Esterson M., Fogelman A. M. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990 Apr;85(4):1260–1266. doi: 10.1172/JCI114562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhakdi S., Hugo F., Tranum-Jensen J. Functions and relevance of the terminal complement sequence. Blut. 1990 Jun;60(6):309–318. doi: 10.1007/BF01737843. [DOI] [PubMed] [Google Scholar]
  5. Bhakdi S., Roth M., Nürnberger W. A simple method for quantitative measurement of C3d in human plasma. J Immunol Methods. 1984 Nov 16;74(1):79–86. doi: 10.1016/0022-1759(84)90369-7. [DOI] [PubMed] [Google Scholar]
  6. Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
  7. Brown M. S., Ho Y. K., Goldstein J. L. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem. 1980 Oct 10;255(19):9344–9352. [PubMed] [Google Scholar]
  8. Cathcart M. K., Morel D. W., Chisolm G. M., 3rd Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leukoc Biol. 1985 Aug;38(2):341–350. doi: 10.1002/jlb.38.2.341. [DOI] [PubMed] [Google Scholar]
  9. Chao F. F., Amende L. M., Blanchette-Mackie E. J., Skarlatos S. I., Gamble W., Resau J. H., Mergner W. T., Kruth H. S. Unesterified cholesterol-rich lipid particles in atherosclerotic lesions of human and rabbit aortas. Am J Pathol. 1988 Apr;131(1):73–83. [PMC free article] [PubMed] [Google Scholar]
  10. Chao F. F., Blanchette-Mackie E. J., Chen Y. J., Dickens B. F., Berlin E., Amende L. M., Skarlatos S. I., Gamble W., Resau J. H., Mergner W. T. Characterization of two unique cholesterol-rich lipid particles isolated from human atherosclerotic lesions. Am J Pathol. 1990 Jan;136(1):169–179. [PMC free article] [PubMed] [Google Scholar]
  11. Chao F. F., Blanchette-Mackie E. J., Tertov V. V., Skarlatos S. I., Chen Y. J., Kruth H. S. Hydrolysis of cholesteryl ester in low density lipoprotein converts this lipoprotein to a liposome. J Biol Chem. 1992 Mar 5;267(7):4992–4998. [PubMed] [Google Scholar]
  12. Chatterton J. E., Phillips M. L., Curtiss L. K., Milne R. W., Marcel Y. L., Schumaker V. N. Mapping apolipoprotein B on the low density lipoprotein surface by immunoelectron microscopy. J Biol Chem. 1991 Mar 25;266(9):5955–5962. [PubMed] [Google Scholar]
  13. Chung B. H., Tallis G., Yalamoori V., Anantharamaiah G. M., Segrest J. P. Liposome-like particles isolated from human atherosclerotic plaques are structurally and compositionally similar to surface remnants of triglyceride-rich lipoproteins. Arterioscler Thromb. 1994 Apr;14(4):622–635. doi: 10.1161/01.atv.14.4.622. [DOI] [PubMed] [Google Scholar]
  14. Cushing S. D., Berliner J. A., Valente A. J., Territo M. C., Navab M., Parhami F., Gerrity R., Schwartz C. J., Fogelman A. M. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5134–5138. doi: 10.1073/pnas.87.13.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Denholm E. M., Wolber F. M. A simple method for the purification of human peripheral blood monocytes. A substitute for Sepracell-MN. J Immunol Methods. 1991 Nov 22;144(2):247–251. doi: 10.1016/0022-1759(91)90092-t. [DOI] [PubMed] [Google Scholar]
  16. Endemann G., Stanton L. W., Madden K. S., Bryant C. M., White R. T., Protter A. A. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem. 1993 Jun 5;268(16):11811–11816. [PubMed] [Google Scholar]
  17. Fogelman A. M., Shechter I., Seager J., Hokom M., Child J. S., Edwards P. A. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2214–2218. doi: 10.1073/pnas.77.4.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Frank J. S., Fogelman A. M. Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching. J Lipid Res. 1989 Jul;30(7):967–978. [PubMed] [Google Scholar]
  19. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  20. Goldstein J. L., Hazzard W. R., Schrott H. G., Bierman E. L., Motulsky A. G. Hyperlipidemia in coronary heart disease. I. Lipid levels in 500 survivors of myocardial infarction. J Clin Invest. 1973 Jul;52(7):1533–1543. doi: 10.1172/JCI107331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979 Jan;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Greenspan P., Mayer E. P., Fowler S. D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985 Mar;100(3):965–973. doi: 10.1083/jcb.100.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Guyton J. R., Klemp K. F., Mims M. P. Altered ultrastructural morphology of self-aggregated low density lipoproteins: coalescence of lipid domains forming droplets and vesicles. J Lipid Res. 1991 Jun;32(6):953–962. [PubMed] [Google Scholar]
  24. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6499–6503. doi: 10.1073/pnas.78.10.6499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hessler J. R., Morel D. W., Lewis L. J., Chisolm G. M. Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis. 1983 May-Jun;3(3):215–222. doi: 10.1161/01.atv.3.3.215. [DOI] [PubMed] [Google Scholar]
  27. Hoff H. F., O'Neil J., Pepin J. M., Cole T. B. Macrophage uptake of cholesterol-containing particles derived from LDL and isolated from atherosclerotic lesions. Eur Heart J. 1990 Aug;11 (Suppl E):105–115. doi: 10.1093/eurheartj/11.suppl_e.105. [DOI] [PubMed] [Google Scholar]
  28. Hugo F., Krämer S., Bhakdi S. Sensitive ELISA for quantitating the terminal membrane C5b-9 and fluid-phase SC5b-9 complex of human complement. J Immunol Methods. 1987 May 20;99(2):243–251. doi: 10.1016/0022-1759(87)90134-7. [DOI] [PubMed] [Google Scholar]
  29. Kazatchkine M. D., Nydegger U. E. The human alternative complement pathway: biology and immunopathology of activation and regulation. Prog Allergy. 1982;30:193–234. [PubMed] [Google Scholar]
  30. Krieger M., Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem. 1994;63:601–637. doi: 10.1146/annurev.bi.63.070194.003125. [DOI] [PubMed] [Google Scholar]
  31. Kruth H. S. Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles. Am J Pathol. 1984 Feb;114(2):201–208. [PMC free article] [PubMed] [Google Scholar]
  32. Kruth H. S. Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development. Atherosclerosis. 1985 Nov;57(2-3):337–341. doi: 10.1016/0021-9150(85)90045-0. [DOI] [PubMed] [Google Scholar]
  33. Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mora R., Lupu F., Simionescu N. Prelesional events in atherogenesis. Colocalization of apolipoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in the aorta of hyperlipidemic rabbit. Atherosclerosis. 1987 Oct;67(2-3):143–154. doi: 10.1016/0021-9150(87)90274-7. [DOI] [PubMed] [Google Scholar]
  35. Mora R., Simionescu M., Simionescu N. Purification and partial characterization of extracellular liposomes isolated from the hyperlipidemic rabbit aorta. J Lipid Res. 1990 Oct;31(10):1793–1807. [PubMed] [Google Scholar]
  36. NEWMAN H. A., ZILVERSMIT D. B. Quantitative aspects of cholesterol flux in rabbit atheromatous lesions. J Biol Chem. 1962 Jul;237:2078–2084. [PubMed] [Google Scholar]
  37. Nieminen M. S., Mattila K., Valtonen V. Infection and inflammation as risk factors for myocardial infarction. Eur Heart J. 1993 Dec;14 (Suppl K):12–16. [PubMed] [Google Scholar]
  38. Orekhov A. N., Tertov V. V., Mukhin D. N. Desialylated low density lipoprotein--naturally occurring modified lipoprotein with atherogenic potency. Atherosclerosis. 1991 Feb;86(2-3):153–161. doi: 10.1016/0021-9150(91)90211-k. [DOI] [PubMed] [Google Scholar]
  39. Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
  40. Salacinski P. R., McLean C., Sykes J. E., Clement-Jones V. V., Lowry P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem. 1981 Oct;117(1):136–146. doi: 10.1016/0003-2697(81)90703-x. [DOI] [PubMed] [Google Scholar]
  41. Schettler V., Wieland E., Verwiebe R., Schuff-Werner P., Scheler F., Oellerich M. Plasma lipids are not oxidized during hemodialysis. Nephron. 1994;67(1):42–47. doi: 10.1159/000187886. [DOI] [PubMed] [Google Scholar]
  42. Schwenke D. C., Carew T. E. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis. 1989 Nov-Dec;9(6):908–918. doi: 10.1161/01.atv.9.6.908. [DOI] [PubMed] [Google Scholar]
  43. Seifert P. S., Hugo F., Hansson G. K., Bhakdi S. Prelesional complement activation in experimental atherosclerosis. Terminal C5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits. Lab Invest. 1989 Jun;60(6):747–754. [PubMed] [Google Scholar]
  44. Seifert P. S., Hugo F., Tranum-Jensen J., Zâhringer U., Muhly M., Bhakdi S. Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions. J Exp Med. 1990 Aug 1;172(2):547–557. doi: 10.1084/jem.172.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Simionescu N., Vasile E., Lupu F., Popescu G., Simionescu M. Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol. 1986 Apr;123(1):109–125. [PMC free article] [PubMed] [Google Scholar]
  46. Sparrow C. P., Parthasarathy S., Steinberg D. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem. 1989 Feb 15;264(5):2599–2604. [PubMed] [Google Scholar]
  47. Steinberg D. Lipoproteins and atherosclerosis. A look back and a look ahead. Arteriosclerosis. 1983 Jul-Aug;3(4):283–301. doi: 10.1161/01.atv.3.4.283. [DOI] [PubMed] [Google Scholar]
  48. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  49. Steinbrecher U. P., Lougheed M. Scavenger receptor-independent stimulation of cholesterol esterification in macrophages by low density lipoprotein extracted from human aortic intima. Arterioscler Thromb. 1992 May;12(5):608–625. doi: 10.1161/01.atv.12.5.608. [DOI] [PubMed] [Google Scholar]
  50. Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Suits A. G., Chait A., Aviram M., Heinecke J. W. Phagocytosis of aggregated lipoprotein by macrophages: low density lipoprotein receptor-dependent foam-cell formation. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2713–2717. doi: 10.1073/pnas.86.8.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tranum-Jensen J. Electron microscopy: assays involving negative staining. Methods Enzymol. 1988;165:357–374. doi: 10.1016/s0076-6879(88)65053-1. [DOI] [PubMed] [Google Scholar]
  53. Vlaicu R., Niculescu F., Rus H. G., Cristea A. Immunohistochemical localization of the terminal C5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis. 1985 Nov;57(2-3):163–177. doi: 10.1016/0021-9150(85)90030-9. [DOI] [PubMed] [Google Scholar]
  54. Wieland E., Brandes A., Armstrong V. W., Oellerich M. Oxidative modification of low density lipoproteins by human polymorphonuclear leukocytes. Eur J Clin Chem Clin Biochem. 1993 Nov;31(11):725–731. doi: 10.1515/cclm.1993.31.11.725. [DOI] [PubMed] [Google Scholar]
  55. Wieland E., Parthasarathy S., Steinberg D. Peroxidase-dependent metal-independent oxidation of low density lipoprotein in vitro: a model for in vivo oxidation? Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5929–5933. doi: 10.1073/pnas.90.13.5929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wieland E., Schettler V., Diedrich F., Schuff-Werner P., Oellerich M. Determination of lipid hydroperoxides in serum iodometry and high performance liquid chromatography compared. Eur J Clin Chem Clin Biochem. 1992 Jun;30(6):363–369. doi: 10.1515/cclm.1992.30.6.363. [DOI] [PubMed] [Google Scholar]
  57. Zhang H. F., Basra H. J., Steinbrecher U. P. Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J Lipid Res. 1990 Aug;31(8):1361–1369. [PubMed] [Google Scholar]
  58. el-Saadani M., Esterbauer H., el-Sayed M., Goher M., Nassar A. Y., Jürgens G. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res. 1989 Apr;30(4):627–630. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES