Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Dec 1;182(6):1847–1856. doi: 10.1084/jem.182.6.1847

HLA-A2 subtypes are functionally distinct in peptide binding and presentation

PMCID: PMC2192253  PMID: 7500030

Abstract

Nearly half of HLA-A2-positive individuals in African populations have a subtype of HLA-A2 other than the A*0201 allele. We have isolated the common African HLA-A2 subtype genes from Epstein-Barr virus-transformed B cell lines and have established stable class I reduced transfectants expressing these alleles. We have studied the peptide binding and presentation properties of A*0201, A*0202, A*0205, A*0214, and A*6901 by a combination of approaches: assaying direct binding of labeled synthetic peptides, studying the ability of antigen-specific cytotoxic T lymphocytes to recognize peptide-pulsed cells, and sequencing peptide pools and individual ligands eluted from cells. We find that A*0201- restricted peptides can also bind to A*0202 but do not bind strongly to the other alleles in this study. We show that some cytotoxic T lymphocytes can recognize all subtypes capable of binding an antigenic peptide, whereas others are subtype specific. Sequencing of eluted peptides reveals that A*0202 has a similar peptide motif to A*0201, but that A*0205, A*0214, and A*6901 have different motifs. These data strongly support a model in which residue 9 (Phe or Tyr) of the A2/A68/A69 molecules is a critical factor in determining the specificity of the B pocket of the major histocompatibility complex and the position 2 anchor residue of associated peptides. We conclude that a single-amino acid difference in the major histocompatibility complex can be sufficient to cause a dramatic change in the nature of bound peptides, implying that individuals with closely related HLA subtypes may present very different repertoires of antigenic peptides to T cells in an immune response. It is likely to be a general phenomenon that very similar class I subtypes will behave as functionally distinct HLA allotypes.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnstable C. J., Bodmer W. F., Brown G., Galfre G., Milstein C., Williams A. F., Ziegler A. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell. 1978 May;14(1):9–20. doi: 10.1016/0092-8674(78)90296-9. [DOI] [PubMed] [Google Scholar]
  2. Barouch D., Krausa P., Bodmer J., Browning M. J., McMichael A. J. Identification of a novel HLA-A2 subtype, HLA-A*0216. Immunogenetics. 1995;41(6):388–388. doi: 10.1007/BF00164000. [DOI] [PubMed] [Google Scholar]
  3. Bednarek M. A., Sauma S. Y., Gammon M. C., Porter G., Tamhankar S., Williamson A. R., Zweerink H. J. The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLA-A2. J Immunol. 1991 Dec 15;147(12):4047–4053. [PubMed] [Google Scholar]
  4. Bertoletti A., Chisari F. V., Penna A., Guilhot S., Galati L., Missale G., Fowler P., Schlicht H. J., Vitiello A., Chesnut R. C. Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis B virus nucleocapsid protein. J Virol. 1993 Apr;67(4):2376–2380. doi: 10.1128/jvi.67.4.2376-2380.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bertoletti A., Ferrari C., Fiaccadori F., Penna A., Margolskee R., Schlicht H. J., Fowler P., Guilhot S., Chisari F. V. HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10445–10449. doi: 10.1073/pnas.88.23.10445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biddison W. E., Ward F. E., Shearer G. M., Shaw S. The self determinants recognized by human virus-immune T cells can be distinguished from the serologically defined HLA antigens. J Immunol. 1980 Feb;124(2):548–552. [PubMed] [Google Scholar]
  7. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  8. Bodmer H. C., Gotch F. M., McMichael A. J. Class I cross-restricted T cells reveal low responder allele due to processing of viral antigen. Nature. 1989 Feb 16;337(6208):653–655. doi: 10.1038/337653a0. [DOI] [PubMed] [Google Scholar]
  9. Bodmer J. G., Marsh S. G., Albert E. D., Bodmer W. F., Dupont B., Erlich H. A., Mach B., Mayr W. R., Parham P., Sasazuki T. Nomenclature for factors of the HLA system, 1994. Tissue Antigens. 1994 Jul;44(1):1–18. doi: 10.1111/j.1399-0039.1994.tb02351.x. [DOI] [PubMed] [Google Scholar]
  10. Brooks J. M., Murray R. J., Thomas W. A., Kurilla M. G., Rickinson A. B. Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide. J Exp Med. 1993 Sep 1;178(3):879–887. doi: 10.1084/jem.178.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Colbert R. A., Rowland-Jones S. L., McMichael A. J., Frelinger J. A. Differences in peptide presentation between B27 subtypes: the importance of the P1 side chain in maintaining high affinity peptide binding to B*2703. Immunity. 1994 May;1(2):121–130. doi: 10.1016/1074-7613(94)90105-8. [DOI] [PubMed] [Google Scholar]
  12. Edwards P. A., Smith C. M., Neville A. M., O'Hare M. J. A human-hybridoma system based on a fast-growing mutant of the ARH-77 plasma cell leukemia-derived line. Eur J Immunol. 1982 Aug;12(8):641–648. doi: 10.1002/eji.1830120804. [DOI] [PubMed] [Google Scholar]
  13. Ellis S. A., Taylor C., McMichael A. Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum Immunol. 1982 Aug;5(1):49–59. doi: 10.1016/0198-8859(82)90030-1. [DOI] [PubMed] [Google Scholar]
  14. Falk K., Rötzschke O., Takiguchi M., Gnau V., Stevanović S., Jung G., Rammensee H. G. Peptide motifs of HLA-B38 and B39 molecules. Immunogenetics. 1995;41(2-3):162–164. doi: 10.1007/BF00182332. [DOI] [PubMed] [Google Scholar]
  15. Falk K., Rötzschke O., Takiguchi M., Gnau V., Stevanović S., Jung G., Rammensee H. G. Peptide motifs of HLA-B51, -B52 and -B78 molecules, and implications for Behćet's disease. Int Immunol. 1995 Feb;7(2):223–228. doi: 10.1093/intimm/7.2.223. [DOI] [PubMed] [Google Scholar]
  16. Fruci D., Rovero P., Falasca G., Chersi A., Sorrentino R., Butler R., Tanigaki N., Tosi R. Anchor residue motifs of HLA class-I-binding peptides analyzed by the direct binding of synthetic peptides to HLA class I alpha chains. Hum Immunol. 1993 Nov;38(3):187–192. doi: 10.1016/0198-8859(93)90539-d. [DOI] [PubMed] [Google Scholar]
  17. Gotch F. M., Kelly C., Ellis S. A., Wallace L., Rickinson A. B., van der Poel J., Crumpton M. J., McMichael A. J. Characterization of the HLA-A2.2 subtype: T cell evidence for further heterogeneity. Immunogenetics. 1985;21(1):11–23. doi: 10.1007/BF00372237. [DOI] [PubMed] [Google Scholar]
  18. Gotch F., McMichael A., Rothbard J. Recognition of influenza A matrix protein by HLA-A2-restricted cytotoxic T lymphocytes. Use of analogues to orientate the matrix peptide in the HLA-A2 binding site. J Exp Med. 1988 Dec 1;168(6):2045–2057. doi: 10.1084/jem.168.6.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guo H. C., Jardetzky T. S., Garrett T. P., Lane W. S., Strominger J. L., Wiley D. C. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature. 1992 Nov 26;360(6402):364–366. doi: 10.1038/360364a0. [DOI] [PubMed] [Google Scholar]
  20. Guo H. C., Madden D. R., Silver M. L., Jardetzky T. S., Gorga J. C., Strominger J. L., Wiley D. C. Comparison of the P2 specificity pocket in three human histocompatibility antigens: HLA-A*6801, HLA-A*0201, and HLA-B*2705. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8053–8057. doi: 10.1073/pnas.90.17.8053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hammer J., Gallazzi F., Bono E., Karr R. W., Guenot J., Valsasnini P., Nagy Z. A., Sinigaglia F. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J Exp Med. 1995 May 1;181(5):1847–1855. doi: 10.1084/jem.181.5.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hill A. V., Allsopp C. E., Kwiatkowski D., Anstey N. M., Twumasi P., Rowe P. A., Bennett S., Brewster D., McMichael A. J., Greenwood B. M. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991 Aug 15;352(6336):595–600. doi: 10.1038/352595a0. [DOI] [PubMed] [Google Scholar]
  23. Hogan K. T., Clayberger C., Le A. X., Walk S. F., Ridge J. P., Parham P., Krensky A. M., Engelhard V. H. Cytotoxic T lymphocyte-defined epitope differences between HLA-A2.1 and HLA-A2.2 map to two distinct regions of the molecule. J Immunol. 1988 Dec 1;141(11):4005–4011. [PubMed] [Google Scholar]
  24. Hogan K. T., Shimojo N., Walk S. F., Engelhard V. H., Maloy W. L., Coligan J. E., Biddison W. E. Mutations in the alpha 2 helix of HLA-A2 affect presentation but do not inhibit binding of influenza virus matrix peptide. J Exp Med. 1988 Aug 1;168(2):725–736. doi: 10.1084/jem.168.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hunt D. F., Henderson R. A., Shabanowitz J., Sakaguchi K., Michel H., Sevilir N., Cox A. L., Appella E., Engelhard V. H. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science. 1992 Mar 6;255(5049):1261–1263. doi: 10.1126/science.1546328. [DOI] [PubMed] [Google Scholar]
  26. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  27. Krangel M. S., Taketani S., Biddison W. E., Strong D. M., Strominger J. L. Comparative structural analysis of HLA-A2 antigens distinguishable by cytotoxic T lymphocytes: variants M7 and DR1. Biochemistry. 1982 Nov 23;21(24):6313–6321. doi: 10.1021/bi00267a042. [DOI] [PubMed] [Google Scholar]
  28. Krausa P., Brywka M., 3rd, Savage D., Hui K. M., Bunce M., Ngai J. L., Teo D. L., Ong Y. W., Barouch D., Allsop C. E. Genetic polymorphism within HLA-A*02: significant allelic variation revealed in different populations. Tissue Antigens. 1995 Apr;45(4):223–231. doi: 10.1111/j.1399-0039.1995.tb02444.x. [DOI] [PubMed] [Google Scholar]
  29. López-Larrea C., Sujirachato K., Mehra N. K., Chiewsilp P., Isarangkura D., Kanga U., Dominguez O., Coto E., Penã M., Setién F. HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens. 1995 Mar;45(3):169–176. doi: 10.1111/j.1399-0039.1995.tb02436.x. [DOI] [PubMed] [Google Scholar]
  30. López D., García-Hoyo R., López de Castro J. A. Clonal analysis of alloreactive T cell responses against the closely related B*2705 and B*2703 subtypes. Implications for HLA-B27 association to spondyloarthropathy. J Immunol. 1994 Jun 1;152(11):5557–5571. [PubMed] [Google Scholar]
  31. Madden D. R., Garboczi D. N., Wiley D. C. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell. 1993 Nov 19;75(4):693–708. doi: 10.1016/0092-8674(93)90490-h. [DOI] [PubMed] [Google Scholar]
  32. Matsui M., Frelinger J. A. Restoration of CTL recognition of a mutant FMP peptide by a compensatory change in HLA-A2. Immunogenetics. 1994;40(1):66–69. doi: 10.1007/BF00163966. [DOI] [PubMed] [Google Scholar]
  33. Matsui M., Hioe C. E., Frelinger J. A. Roles of the six peptide-binding pockets of the HLA-A2 molecule in allorecognition by human cytotoxic T-cell clones. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):674–678. doi: 10.1073/pnas.90.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Matsui M., Moots R. J., McMichael A. J., Frelinger J. A. Significance of the six peptide-binding pockets of HLA-A2.1 in influenza A matrix peptide-specific cytotoxic T-lymphocyte reactivity. Hum Immunol. 1994 Oct;41(2):160–166. doi: 10.1016/0198-8859(94)90010-8. [DOI] [PubMed] [Google Scholar]
  35. McMichael A. J., Gotch F. M., Santos-Aguado J., Strominger J. L. Effect of mutations and variations of HLA-A2 on recognition of a virus peptide epitope by cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9194–9198. doi: 10.1073/pnas.85.23.9194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. McMichael A. J., Parham P., Rust N., Brodsky F. A monoclonal antibody that recognizes an antigenic determinant shared by HLA A2 and B17. Hum Immunol. 1980 Sep;1(2):121–129. doi: 10.1016/0198-8859(80)90099-3. [DOI] [PubMed] [Google Scholar]
  37. Morrison J., Elvin J., Latron F., Gotch F., Moots R., Strominger J. L., McMichael A. Identification of the nonamer peptide from influenza A matrix protein and the role of pockets of HLA-A2 in its recognition by cytotoxic T lymphocytes. Eur J Immunol. 1992 Apr;22(4):903–907. doi: 10.1002/eji.1830220404. [DOI] [PubMed] [Google Scholar]
  38. Nixon D. F., Townsend A. R., Elvin J. G., Rizza C. R., Gallwey J., McMichael A. J. HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature. 1988 Dec 1;336(6198):484–487. doi: 10.1038/336484a0. [DOI] [PubMed] [Google Scholar]
  39. Parham P., Brodsky F. M. Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum Immunol. 1981 Dec;3(4):277–299. doi: 10.1016/0198-8859(81)90065-3. [DOI] [PubMed] [Google Scholar]
  40. Parker K. C., Bednarek M. A., Hull L. K., Utz U., Cunningham B., Zweerink H. J., Biddison W. E., Coligan J. E. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol. 1992 Dec 1;149(11):3580–3587. [PubMed] [Google Scholar]
  41. Ruppert J., Sidney J., Celis E., Kubo R. T., Grey H. M., Sette A. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell. 1993 Sep 10;74(5):929–937. doi: 10.1016/0092-8674(93)90472-3. [DOI] [PubMed] [Google Scholar]
  42. Rötzschke O., Falk K., Stevanović S., Gnau V., Jung G., Rammensee H. G. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. Immunogenetics. 1994;39(1):74–77. doi: 10.1007/BF00171803. [DOI] [PubMed] [Google Scholar]
  43. Rötzschke O., Falk K., Stevanović S., Jung G., Rammensee H. G. Peptide motifs of closely related HLA class I molecules encompass substantial differences. Eur J Immunol. 1992 Sep;22(9):2453–2456. doi: 10.1002/eji.1830220940. [DOI] [PubMed] [Google Scholar]
  44. Shimojo N., Anderson R. W., Mattson D. H., Turner R. V., Coligan J. E., Biddison W. E. The kinetics of peptide binding to HLA-A2 and the conformation of the peptide-A2 complex can be determined by amino acid side chains on the floor of the peptide binding groove. Int Immunol. 1990;2(3):193–200. doi: 10.1093/intimm/2.3.193. [DOI] [PubMed] [Google Scholar]
  45. Silver M. L., Guo H. C., Strominger J. L., Wiley D. C. Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature. 1992 Nov 26;360(6402):367–369. doi: 10.1038/360367a0. [DOI] [PubMed] [Google Scholar]
  46. Storkus W. J., Howell D. N., Salter R. D., Dawson J. R., Cresswell P. NK susceptibility varies inversely with target cell class I HLA antigen expression. J Immunol. 1987 Mar 15;138(6):1657–1659. [PubMed] [Google Scholar]
  47. Tanigaki N., Fruci D., Chersi A., Falasca G., Tosi R., Butler R. H. HLA-A2-binding peptides cross-react not only within the A2 subgroup but also with other HLA-A-locus allelic products. Hum Immunol. 1994 Mar;39(3):155–162. doi: 10.1016/0198-8859(94)90255-0. [DOI] [PubMed] [Google Scholar]
  48. Teng J. M., Hogan K. T. Both major and minor peptide-binding pockets in HLA-A2 influence the presentation of influenza virus matrix peptide to cytotoxic T lymphocytes. Mol Immunol. 1994 Apr;31(6):459–470. doi: 10.1016/0161-5890(94)90065-5. [DOI] [PubMed] [Google Scholar]
  49. Tsomides T. J., Walker B. D., Eisen H. N. An optimal viral peptide recognized by CD8+ T cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11276–11280. doi: 10.1073/pnas.88.24.11276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tussey L. G., Matsui M., Rowland-Jones S., Warburton R., Frelinger J. A., McMichael A. Analysis of mutant HLA-A2 molecules. Differential effects on peptide binding and CTL recognition. J Immunol. 1994 Feb 1;152(3):1213–1221. [PubMed] [Google Scholar]
  51. Zemmour J., Little A. M., Schendel D. J., Parham P. The HLA-A,B "negative" mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J Immunol. 1992 Mar 15;148(6):1941–1948. [PubMed] [Google Scholar]
  52. del Guercio M. F., Sidney J., Hermanson G., Perez C., Grey H. M., Kubo R. T., Sette A. Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J Immunol. 1995 Jan 15;154(2):685–693. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES