Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Oct 1;182(4):941–951. doi: 10.1084/jem.182.4.941

Human immunodeficiency virus 1 envelope proteins induce interleukin 1, tumor necrosis factor alpha, and nitric oxide in glial cultures derived from fetal, neonatal, and adult human brain

PMCID: PMC2192278  PMID: 7561697

Abstract

Although microglia are the only cells found to be productively infected in the central nervous system of acquired immunodeficiency disease syndrome (AIDS) patients, there is extensive white and gray matter disease nonetheless. This neuropathogenesis is believed to be due to indirect mechanisms other than infection with human immunodeficiency virus 1 (HIV-1). Cytokines and toxic small molecules have been implicated in the clinical and histopathological findings in CNS AIDS. Previously, we have demonstrated in rodent glial cultures the presence of biologically active epitopes of gp120 and gp41 that are capable of inducing interleukin 1 and tumor necrosis factor alpha. In this study, we map the HIV-1 envelope epitopes that induce nitric oxide, inducible nitric oxide synthase, interleukin 1, and tumor necrosis factor alpha in human glial cultures. Epitopes in the carboxy terminus of gp120 and the amino terminus of gp41 induce these proinflammatory entities. In addition, we compare HIV-1 infection and pathology in glial cells derived from human brain taken at different states of maturation (fetal, neonatal, and adult brain) in an effort to address some of the clinical and histological differences seen in vivo. This study demonstrates that, in the absence of virus infection and even in the absence of distinct viral tropism, human glia respond like rodent glia to non-CD4-binding epitopes of gp120/gp41 with cytokine and nitric oxide production. Differences among fetal, neonatal, and adult glial cells' infectivity and cytokine production indicate that, in addition to functional differences of glia at different stages of development, cofactors in vitro and in vivo may also be critical in facilitating the biological responses of these cells to HIV-1.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brinkmann R., Schwinn A., Narayan O., Zink C., Kreth H. W., Roggendorf W., Dörries R., Schwender S., Imrich H., ter Meulen V. Human immunodeficiency virus infection in microglia: correlation between cells infected in the brain and cells cultured from infectious brain tissue. Ann Neurol. 1992 Apr;31(4):361–365. doi: 10.1002/ana.410310403. [DOI] [PubMed] [Google Scholar]
  2. Bush P. A., Gonzalez N. E., Griscavage J. M., Ignarro L. J. Nitric oxide synthase from cerebellum catalyzes the formation of equimolar quantities of nitric oxide and citrulline from L-arginine. Biochem Biophys Res Commun. 1992 Jun 30;185(3):960–966. doi: 10.1016/0006-291x(92)91720-b. [DOI] [PubMed] [Google Scholar]
  3. Christofinis G., Papadaki L., Sattentau Q., Ferns R. B., Tedder R. HIV replicates in cultured human brain cells. AIDS. 1987 Dec;1(4):229–234. [PubMed] [Google Scholar]
  4. Dickson D. W., Belman A. L., Park Y. D., Wiley C., Horoupian D. S., Llena J., Kure K., Lyman W. D., Morecki R., Mitsudo S. Central nervous system pathology in pediatric AIDS: an autopsy study. APMIS Suppl. 1989;8:40–57. [PubMed] [Google Scholar]
  5. Dighiero P., Reux I., Hauw J. J., Fillet A. M., Courtois Y., Goureau O. Expression of inducible nitric oxide synthase in cytomegalovirus-infected glial cells of retinas from AIDS patients. Neurosci Lett. 1994 Jan 17;166(1):31–34. doi: 10.1016/0304-3940(94)90833-8. [DOI] [PubMed] [Google Scholar]
  6. Esiri M. M., Morris C. S., Millard P. R. Fate of oligodendrocytes in HIV-1 infection. AIDS. 1991 Sep;5(9):1081–1088. doi: 10.1097/00002030-199109000-00003. [DOI] [PubMed] [Google Scholar]
  7. Geller D. A., Lowenstein C. J., Shapiro R. A., Nussler A. K., Di Silvio M., Wang S. C., Nakayama D. K., Simmons R. L., Snyder S. H., Billiar T. R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491–3495. doi: 10.1073/pnas.90.8.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koka P., He K., Camerini D., Tran T., Yashar S. S., Merrill J. E. The mapping of HIV-1 gp160 epitopes required for interleukin-1 and tumor necrosis factor alpha production in glial cells. J Neuroimmunol. 1995 Mar;57(1-2):179–191. doi: 10.1016/0165-5728(94)00184-p. [DOI] [PubMed] [Google Scholar]
  9. Kure K., Llena J. F., Lyman W. D., Soeiro R., Weidenheim K. M., Hirano A., Dickson D. W. Human immunodeficiency virus-1 infection of the nervous system: an autopsy study of 268 adult, pediatric, and fetal brains. Hum Pathol. 1991 Jul;22(7):700–710. doi: 10.1016/0046-8177(91)90293-x. [DOI] [PubMed] [Google Scholar]
  10. Lee S. C., Dickson D. W., Liu W., Brosnan C. F. Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol. 1993 Jul;46(1-2):19–24. doi: 10.1016/0165-5728(93)90229-r. [DOI] [PubMed] [Google Scholar]
  11. Lee S. C., Hatch W. C., Liu W., Kress Y., Lyman W. D., Dickson D. W. Productive infection of human fetal microglia by HIV-1. Am J Pathol. 1993 Oct;143(4):1032–1039. [PMC free article] [PubMed] [Google Scholar]
  12. Levy J. A. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993 Mar;57(1):183–289. doi: 10.1128/mr.57.1.183-289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lipton S. A. Neuronal injury associated with HIV-1 and potential treatment with calcium-channel and NMDA antagonists. Dev Neurosci. 1994;16(3-4):145–151. doi: 10.1159/000112101. [DOI] [PubMed] [Google Scholar]
  14. Mano H., Chermann J. C. Fetal human immunodeficiency virus type 1 infection of different organs in the second trimester. AIDS Res Hum Retroviruses. 1991 Jan;7(1):83–88. doi: 10.1089/aid.1991.7.83. [DOI] [PubMed] [Google Scholar]
  15. Merrill J. E. Effects of interleukin-1 and tumor necrosis factor-alpha on astrocytes, microglia, oligodendrocytes, and glial precursors in vitro. Dev Neurosci. 1991;13(3):130–137. doi: 10.1159/000112150. [DOI] [PubMed] [Google Scholar]
  16. Merrill J. E., Ignarro L. J., Sherman M. P., Melinek J., Lane T. E. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol. 1993 Aug 15;151(4):2132–2141. [PubMed] [Google Scholar]
  17. Merrill J. E., Koyanagi Y., Zack J., Thomas L., Martin F., Chen I. S. Induction of interleukin-1 and tumor necrosis factor alpha in brain cultures by human immunodeficiency virus type 1. J Virol. 1992 Apr;66(4):2217–2225. doi: 10.1128/jvi.66.4.2217-2225.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mitrovic B., Ignarro L. J., Montestruque S., Smoll A., Merrill J. E. Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience. 1994 Aug;61(3):575–585. doi: 10.1016/0306-4522(94)90435-9. [DOI] [PubMed] [Google Scholar]
  19. Mitrovic B., St Pierre B. A., Mackenzie-Graham A. J., Merrill J. E. The role of nitric oxide in glial pathology. Ann N Y Acad Sci. 1994 Nov 17;738:436–446. doi: 10.1111/j.1749-6632.1994.tb21835.x. [DOI] [PubMed] [Google Scholar]
  20. Mollace V., Colasanti M., Persichini T., Bagetta G., Lauro G. M., Nistico G. HIV gp120 glycoprotein stimulates the inducible isoform of no synthase in human cultured astrocytoma cells. Biochem Biophys Res Commun. 1993 Jul 15;194(1):439–445. doi: 10.1006/bbrc.1993.1839. [DOI] [PubMed] [Google Scholar]
  21. Murphy S., Simmons M. L., Agullo L., Garcia A., Feinstein D. L., Galea E., Reis D. J., Minc-Golomb D., Schwartz J. P. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 1993 Aug;16(8):323–328. doi: 10.1016/0166-2236(93)90109-y. [DOI] [PubMed] [Google Scholar]
  22. O'Brien W. A., Chen I. S., Ho D. D., Daar E. S. Mapping genetic determinants for human immunodeficiency virus type 1 resistance to soluble CD4. J Virol. 1992 May;66(5):3125–3130. doi: 10.1128/jvi.66.5.3125-3130.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peudenier S., Hery C., Montagnier L., Tardieu M. Human microglial cells: characterization in cerebral tissue and in primary culture, and study of their susceptibility to HIV-1 infection. Ann Neurol. 1991 Feb;29(2):152–161. doi: 10.1002/ana.410290207. [DOI] [PubMed] [Google Scholar]
  24. Peudenier S., Héry C., Ng K. H., Tardieu M. HIV receptors within the brain: a study of CD4 and MHC-II on human neurons, astrocytes and microglial cells. Res Virol. 1991 Mar-Jun;142(2-3):145–149. doi: 10.1016/0923-2516(91)90051-4. [DOI] [PubMed] [Google Scholar]
  25. Pietraforte D., Tritarelli E., Testa U., Minetti M. gp120 HIV envelope glycoprotein increases the production of nitric oxide in human monocyte-derived macrophages. J Leukoc Biol. 1994 Feb;55(2):175–182. doi: 10.1002/jlb.55.2.175. [DOI] [PubMed] [Google Scholar]
  26. Poli G., Bressler P., Kinter A., Duh E., Timmer W. C., Rabson A., Justement J. S., Stanley S., Fauci A. S. Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor alpha by transcriptional and post-transcriptional mechanisms. J Exp Med. 1990 Jul 1;172(1):151–158. doi: 10.1084/jem.172.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saito Y., Sharer L. R., Epstein L. G., Michaels J., Mintz M., Louder M., Golding K., Cvetkovich T. A., Blumberg B. M. Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology. 1994 Mar;44(3 Pt 1):474–481. doi: 10.1212/wnl.44.3_part_1.474. [DOI] [PubMed] [Google Scholar]
  28. Teglbjaerg L. L., Hansen J. E., Dalbøge H., Nielsen C. M., Mathiesen L. R., Nielsen O. Detection of human immunodeficiency virus DNA in cultured human glial cells by means of the polymerase chain reaction. Acta Neurol Scand. 1991 Mar;83(3):179–182. doi: 10.1111/j.1600-0404.1991.tb04673.x. [DOI] [PubMed] [Google Scholar]
  29. Tornatore C., Nath A., Amemiya K., Major E. O. Persistent human immunodeficiency virus type 1 infection in human fetal glial cells reactivated by T-cell factor(s) or by the cytokines tumor necrosis factor alpha and interleukin-1 beta. J Virol. 1991 Nov;65(11):6094–6100. doi: 10.1128/jvi.65.11.6094-6100.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tyor W. R., Glass J. D., Griffin J. W., Becker P. S., McArthur J. C., Bezman L., Griffin D. E. Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol. 1992 Apr;31(4):349–360. doi: 10.1002/ana.410310402. [DOI] [PubMed] [Google Scholar]
  31. Vazeux R., Lacroix-Ciaudo C., Blanche S., Cumont M. C., Henin D., Gray F., Boccon-Gibod L., Tardieu M. Low levels of human immunodeficiency virus replication in the brain tissue of children with severe acquired immunodeficiency syndrome encephalopathy. Am J Pathol. 1992 Jan;140(1):137–144. [PMC free article] [PubMed] [Google Scholar]
  32. Watkins B. A., Dorn H. H., Kelly W. B., Armstrong R. C., Potts B. J., Michaels F., Kufta C. V., Dubois-Dalcq M. Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science. 1990 Aug 3;249(4968):549–553. doi: 10.1126/science.2200125. [DOI] [PubMed] [Google Scholar]
  33. Weis S., Haug H., Budka H. Astroglial changes in the cerebral cortex of AIDS brains: a morphometric and immunohistochemical investigation. Neuropathol Appl Neurobiol. 1993 Aug;19(4):329–335. doi: 10.1111/j.1365-2990.1993.tb00448.x. [DOI] [PubMed] [Google Scholar]
  34. Williams K., Bar-Or A., Ulvestad E., Olivier A., Antel J. P., Yong V. W. Biology of adult human microglia in culture: comparisons with peripheral blood monocytes and astrocytes. J Neuropathol Exp Neurol. 1992 Sep;51(5):538–549. doi: 10.1097/00005072-199209000-00009. [DOI] [PubMed] [Google Scholar]
  35. Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990 Apr 20;61(2):213–222. doi: 10.1016/0092-8674(90)90802-l. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES