Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Oct 1;182(4):931–940. doi: 10.1084/jem.182.4.931

Interleukin 4 and T helper type 2 cells are required for development of experimental onchocercal keratitis (river blindness)

PMCID: PMC2192285  PMID: 7561696

Abstract

Inflammation of the corneal stroma (stromal keratitis) is a serious complication of infection with the nematode parasite Onchocerca volvulus. Because stromal keratitis is believed to be immunologically mediated in humans, we used a murine model to examine the role of T cells and T helper cell cytokines in the immunopathogenesis of these eye lesions. BALB/c mice immunized subcutaneously and injected intrastromally with soluble O. volvulus antigens (OvAg) developed pronounced corneal opacification and neovascularization. The corneal stroma was edematous and contained numerous eosinophils and mononuclear cells. Stromal keratitis in immunized mice was determined to be T cell dependent based on the following observations: (a) T cell-deficient nude mice immunized and injected intrastromally with OvAg fail to develop corneal pathology; and (b) adoptive transfer of spleen cells from OvAg-immunized BALB/c mice to naive nude mice before intrastromal injection of OvAg results in development of keratitis. OvAg-stimulated lymph node and spleen cell cytokine production was dependent on CD4 cells and included interleukin (IL)-4 and IL-5, but not interferon gamma, indicating a predominant T helper type 2 cell-like response. Inflamed corneas from immunized BALB/c mice and from reconstituted nude mice had greatly elevated CD4 and IL-4 gene expression compared with interferon gamma. Mice in which the IL-4 gene was disrupted failed to develop corneal disease, demonstrating that IL-4 is essential in the immunopathogenesis of O. volvulus-mediated stromal keratitis.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Sasson S. Z., Le Gros G., Conrad D. H., Finkelman F. D., Paul W. E. Cross-linking Fc receptors stimulate splenic non-B, non-T cells to secrete interleukin 4 and other lymphokines. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1421–1425. doi: 10.1073/pnas.87.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Byars N. E., Allison A. C. Adjuvant formulation for use in vaccines to elicit both cell-mediated and humoral immunity. Vaccine. 1987 Sep;5(3):223–228. doi: 10.1016/0264-410x(87)90105-8. [DOI] [PubMed] [Google Scholar]
  3. Chakravarti B., Herring T. A., Lass J. H., Parker J. S., Bucy R. P., Diaconu E., Tseng J., Whitfield D. R., Greene B. M., Chakravarti D. N. Infiltration of CD4+ T cells into cornea during development of Onchocerca volvulus-induced experimental sclerosing keratitis in mice. Cell Immunol. 1994 Dec;159(2):306–314. doi: 10.1006/cimm.1994.1316. [DOI] [PubMed] [Google Scholar]
  4. Chakravarti B., Lass J. H., Bardenstein D. S., Diaconu E., Roy C. E., Herring T. A., Chakravarti D. N., Greene B. M. Immune-mediated Onchocerca volvulus sclerosing keratitis in the mouse. Exp Eye Res. 1993 Jul;57(1):21–27. doi: 10.1006/exer.1993.1094. [DOI] [PubMed] [Google Scholar]
  5. Chan C. C., Ottesen E. A., Awadzi K., Badu R., Nussenblatt R. B. Immunopathology of ocular onchocerciasis. I. Inflammatory cells infiltrating the anterior segment. Clin Exp Immunol. 1989 Sep;77(3):367–372. [PMC free article] [PubMed] [Google Scholar]
  6. Coffman R. L., Seymour B. W., Hudak S., Jackson J., Rennick D. Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science. 1989 Jul 21;245(4915):308–310. doi: 10.1126/science.2787531. [DOI] [PubMed] [Google Scholar]
  7. Conrad D. H. Fc epsilon RII/CD23: the low affinity receptor for IgE. Annu Rev Immunol. 1990;8:623–645. doi: 10.1146/annurev.iy.08.040190.003203. [DOI] [PubMed] [Google Scholar]
  8. Croft M., Carter L., Swain S. L., Dutton R. W. Generation of polarized antigen-specific CD8 effector populations: reciprocal action of interleukin (IL)-4 and IL-12 in promoting type 2 versus type 1 cytokine profiles. J Exp Med. 1994 Nov 1;180(5):1715–1728. doi: 10.1084/jem.180.5.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Donnelly J. J., Rockey J. H., Bianco A. E., Soulsby E. J. Ocular immunopathologic findings of experimental onchocerciasis. Arch Ophthalmol. 1984 Apr;102(4):628–634. doi: 10.1001/archopht.1984.01040030500036. [DOI] [PubMed] [Google Scholar]
  10. Donnelly J. J., Rockey J. H., Taylor H. R., Soulsby E. J. Onchocerciasis: experimental models of ocular disease. Rev Infect Dis. 1985 Nov-Dec;7(6):820–825. doi: 10.1093/clinids/7.6.820. [DOI] [PubMed] [Google Scholar]
  11. Elson L. H., Guderian R. H., Araujo E., Bradley J. E., Days A., Nutman T. B. Immunity to onchocerciasis: identification of a putatively immune population in a hyperendemic area of Ecuador. J Infect Dis. 1994 Mar;169(3):588–594. doi: 10.1093/infdis/169.3.588. [DOI] [PubMed] [Google Scholar]
  12. Gallin M. Y., Murray D., Lass J. H., Grossniklaus H. E., Greene B. M. Experimental interstitial keratitis induced by Onchocerca volvulus antigens. Arch Ophthalmol. 1988 Oct;106(10):1447–1452. doi: 10.1001/archopht.1988.01060140611033. [DOI] [PubMed] [Google Scholar]
  13. Garner A. Pathology of ocular onchocerciasis: human and experimental. Trans R Soc Trop Med Hyg. 1976;70(5-6):374–377. doi: 10.1016/0035-9203(76)90113-9. [DOI] [PubMed] [Google Scholar]
  14. Gross A., Ben-Sasson S. Z., Paul W. E. Anti-IL-4 diminishes in vivo priming for antigen-specific IL-4 production by T cells. J Immunol. 1993 Mar 15;150(6):2112–2120. [PubMed] [Google Scholar]
  15. Hendricks R. L., Weber P. C., Taylor J. L., Koumbis A., Tumpey T. M., Glorioso J. C. Endogenously produced interferon alpha protects mice from herpes simplex virus type 1 corneal disease. J Gen Virol. 1991 Jul;72(Pt 7):1601–1610. doi: 10.1099/0022-1317-72-7-1601. [DOI] [PubMed] [Google Scholar]
  16. Iwamoto I., Nakajima H., Endo H., Yoshida S. Interferon gamma regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells. J Exp Med. 1993 Feb 1;177(2):573–576. doi: 10.1084/jem.177.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jayaraman S., Heiligenhaus A., Rodriguez A., Soukiasian S., Dorf M. E., Foster C. S. Exacerbation of murine herpes simplex virus-mediated stromal keratitis by Th2 type T cells. J Immunol. 1993 Nov 15;151(10):5777–5789. [PubMed] [Google Scholar]
  18. Katona I. M., Urban J. F., Jr, Kang S. S., Paul W. E., Finkelman F. D. IL-4 requirements for the generation of secondary in vivo IgE responses. J Immunol. 1991 Jun 15;146(12):4215–4221. [PubMed] [Google Scholar]
  19. Kephart G. M., Gleich G. J., Connor D. H., Gibson D. W., Ackerman S. J. Deposition of eosinophil granule major basic protein onto microfilariae of Onchocerca volvulus in the skin of patients treated with diethylcarbamazine. Lab Invest. 1984 Jan;50(1):51–61. [PubMed] [Google Scholar]
  20. Kopf M., Le Gros G., Bachmann M., Lamers M. C., Bluethmann H., Köhler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature. 1993 Mar 18;362(6417):245–248. doi: 10.1038/362245a0. [DOI] [PubMed] [Google Scholar]
  21. Lebman D. A., Coffman R. L. Interleukin 4 causes isotype switching to IgE in T cell-stimulated clonal B cell cultures. J Exp Med. 1988 Sep 1;168(3):853–862. doi: 10.1084/jem.168.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Limaye A. P., Abrams J. S., Silver J. E., Awadzi K., Francis H. F., Ottesen E. A., Nutman T. B. Interleukin-5 and the posttreatment eosinophilia in patients with onchocerciasis. J Clin Invest. 1991 Oct;88(4):1418–1421. doi: 10.1172/JCI115449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mackenzie C. D., Williams J. F., Sisley B. M., Steward M. W., O'Day J. Variations in host responses and the pathogenesis of human onchocerciasis. Rev Infect Dis. 1985 Nov-Dec;7(6):802–808. doi: 10.1093/clinids/7.6.802. [DOI] [PubMed] [Google Scholar]
  24. McCarthy J. S., Ottesen E. A., Nutman T. B. Onchocerciasis in endemic and nonendemic populations: differences in clinical presentation and immunologic findings. J Infect Dis. 1994 Sep;170(3):736–741. doi: 10.1093/infdis/170.3.736. [DOI] [PubMed] [Google Scholar]
  25. Moser R., Fehr J., Bruijnzeel P. L. IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J Immunol. 1992 Aug 15;149(4):1432–1438. [PubMed] [Google Scholar]
  26. Moser R., Groscurth P., Carballido J. M., Bruijnzeel P. L., Blaser K., Heusser C. H., Fehr J. Interleukin-4 induces tissue eosinophilia in mice: correlation with its in vitro capacity to stimulate the endothelial cell-dependent selective transmigration of human eosinophils. J Lab Clin Med. 1993 Nov;122(5):567–575. [PubMed] [Google Scholar]
  27. Newland H. S., White A. T., Greene B. M., Murphy R. P., Taylor H. R. Ocular manifestations of onchocerciasis in a rain forest area of west Africa. Br J Ophthalmol. 1991 Mar;75(3):163–169. doi: 10.1136/bjo.75.3.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Noelle R. J., Kuziel W. A., Maliszewski C. R., McAdams E., Vitetta E. S., Tucker P. W. Regulation of the expression of multiple class II genes in murine B cells by B cell stimulatory factor-1 (BSF-1). J Immunol. 1986 Sep 1;137(5):1718–1723. [PubMed] [Google Scholar]
  29. Ottesen E. A. Immediate hypersensitivity responses in the immunopathogenesis of human onchocerciasis. Rev Infect Dis. 1985 Nov-Dec;7(6):796–801. doi: 10.1093/clinids/7.6.796. [DOI] [PubMed] [Google Scholar]
  30. Paul W. E., Seder R. A., Plaut M. Lymphokine and cytokine production by Fc epsilon RI+ cells. Adv Immunol. 1993;53:1–29. [PubMed] [Google Scholar]
  31. Pearlman E., Hazlett F. E., Jr, Boom W. H., Kazura J. W. Induction of murine T-helper-cell responses to the filarial nematode Brugia malayi. Infect Immun. 1993 Mar;61(3):1105–1112. doi: 10.1128/iai.61.3.1105-1112.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pearlman E., Kazura J. W., Hazlett F. E., Jr, Boom W. H. Modulation of murine cytokine responses to mycobacterial antigens by helminth-induced T helper 2 cell responses. J Immunol. 1993 Nov 1;151(9):4857–4864. [PubMed] [Google Scholar]
  33. Pearlman E., Kroeze W. K., Hazlett F. E., Jr, Chen S. S., Mawhorter S. D., Boom W. H., Kazura J. W. Brugia malayi: acquired resistance to microfilariae in BALB/c mice correlates with local Th2 responses. Exp Parasitol. 1993 Mar;76(2):200–208. doi: 10.1006/expr.1993.1023. [DOI] [PubMed] [Google Scholar]
  34. Remme J., Dadzie K. Y., Rolland A., Thylefors B. Ocular onchocerciasis and intensity of infection in the community. I. West African savanna. Trop Med Parasitol. 1989 Sep;40(3):340–347. [PubMed] [Google Scholar]
  35. Salgame P., Abrams J. S., Clayberger C., Goldstein H., Convit J., Modlin R. L., Bloom B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991 Oct 11;254(5029):279–282. doi: 10.1126/science.254.5029.279. [DOI] [PubMed] [Google Scholar]
  36. Schleimer R. P., Sterbinsky S. A., Kaiser J., Bickel C. A., Klunk D. A., Tomioka K., Newman W., Luscinskas F. W., Gimbrone M. A., Jr, McIntyre B. W. IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol. 1992 Feb 15;148(4):1086–1092. [PubMed] [Google Scholar]
  37. Seder R. A., Boulay J. L., Finkelman F., Barbier S., Ben-Sasson S. Z., Le Gros G., Paul W. E. CD8+ T cells can be primed in vitro to produce IL-4. J Immunol. 1992 Mar 15;148(6):1652–1656. [PubMed] [Google Scholar]
  38. Seder R. A., Paul W. E., Davis M. M., Fazekas de St Groth B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med. 1992 Oct 1;176(4):1091–1098. doi: 10.1084/jem.176.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sher A., Coffman R. L., Hieny S., Cheever A. W. Ablation of eosinophil and IgE responses with anti-IL-5 or anti-IL-4 antibodies fails to affect immunity against Schistosoma mansoni in the mouse. J Immunol. 1990 Dec 1;145(11):3911–3916. [PubMed] [Google Scholar]
  40. Snapper C. M., Finkelman F. D., Paul W. E. Regulation of IgG1 and IgE production by interleukin 4. Immunol Rev. 1988 Feb;102:51–75. doi: 10.1111/j.1600-065x.1988.tb00741.x. [DOI] [PubMed] [Google Scholar]
  41. Steel C., Lujan-Trangay A., Gonzalez-Peralta C., Zea-Flores G., Nutman T. B. Transient changes in cytokine profiles following ivermectin treatment of onchocerciasis. J Infect Dis. 1994 Oct;170(4):962–970. doi: 10.1093/infdis/170.4.962. [DOI] [PubMed] [Google Scholar]
  42. Steel C., Nutman T. B. Regulation of IL-5 in onchocerciasis. A critical role for IL-2. J Immunol. 1993 Jun 15;150(12):5511–5518. [PubMed] [Google Scholar]
  43. Svetić A., Finkelman F. D., Jian Y. C., Dieffenbach C. W., Scott D. E., McCarthy K. F., Steinberg A. D., Gause W. C. Cytokine gene expression after in vivo primary immunization with goat antibody to mouse IgD antibody. J Immunol. 1991 Oct 1;147(7):2391–2397. [PubMed] [Google Scholar]
  44. Taylor H. R., Murphy R. P., Newland H. S., White A. T., D'Anna S. A., Keyvan-Larijani E., Aziz M. A., Cupp E. W., Greene B. M. Treatment of onchocerciasis. The ocular effects of ivermectin and diethylcarbamazine. Arch Ophthalmol. 1986 Jun;104(6):863–870. doi: 10.1001/archopht.1986.01050180097039. [DOI] [PubMed] [Google Scholar]
  45. Thornhill M. H., Wellicome S. M., Mahiouz D. L., Lanchbury J. S., Kyan-Aung U., Haskard D. O. Tumor necrosis factor combines with IL-4 or IFN-gamma to selectively enhance endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion molecule-1-dependent and -independent binding mechanisms. J Immunol. 1991 Jan 15;146(2):592–598. [PubMed] [Google Scholar]
  46. Trocme S. D., Aldave A. J. The eye and the eosinophil. Surv Ophthalmol. 1994 Nov-Dec;39(3):241–252. doi: 10.1016/0039-6257(94)90197-x. [DOI] [PubMed] [Google Scholar]
  47. Vajdy M., Kosco-Vilbois M. H., Kopf M., Köhler G., Lycke N. Impaired mucosal immune responses in interleukin 4-targeted mice. J Exp Med. 1995 Jan 1;181(1):41–53. doi: 10.1084/jem.181.1.41. [DOI] [PubMed] [Google Scholar]
  48. Verdegaal E. M., Beekhuizen H., Blokland I., van Furth R. Increased adhesion of human monocytes to IL-4-stimulated human venous endothelial cells via CD11/CD18, and very late antigen-4 (VLA-4)/vascular cell adhesion molecule-1 (VCAM-1)-dependent mechanisms. Clin Exp Immunol. 1993 Aug;93(2):292–298. doi: 10.1111/j.1365-2249.1993.tb07982.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vickery A. C., Vincent A. L. Immunity to Brugia pahangi in athymic nude and normal mice: eosinophilia, antibody and hypersensitivity responses. Parasite Immunol. 1984 Nov;6(6):545–559. doi: 10.1111/j.1365-3024.1984.tb00824.x. [DOI] [PubMed] [Google Scholar]
  50. Vickery A. C., Vincent A. L., Sodeman W. A., Jr Effect of immune reconstitution on resistance to Brugia pahangi in congenitally athymic nude mice. J Parasitol. 1983 Jun;69(3):478–485. [PubMed] [Google Scholar]
  51. Vincent A. L., Vickery A. C., Lotz M. J., Desai U. The lymphatic pathology of Brugia pahangi in nude (athymic) and thymic mice C3H/HeN. J Parasitol. 1984 Feb;70(1):48–56. [PubMed] [Google Scholar]
  52. Weller P. F. The immunobiology of eosinophils. N Engl J Med. 1991 Apr 18;324(16):1110–1118. doi: 10.1056/NEJM199104183241607. [DOI] [PubMed] [Google Scholar]
  53. Williams M. E., Kullberg M. C., Barbieri S., Caspar P., Berzofsky J. A., Seder R. A., Sher A. Fc epsilon receptor-positive cells are a major source of antigen-induced interleukin-4 in spleens of mice infected with Schistosoma mansoni. Eur J Immunol. 1993 Aug;23(8):1910–1916. doi: 10.1002/eji.1830230827. [DOI] [PubMed] [Google Scholar]
  54. Wynn T. A., Eltoum I., Cheever A. W., Lewis F. A., Gause W. C., Sher A. Analysis of cytokine mRNA expression during primary granuloma formation induced by eggs of Schistosoma mansoni. J Immunol. 1993 Aug 1;151(3):1430–1440. [PubMed] [Google Scholar]
  55. Wynn T. A., Eltoum I., Oswald I. P., Cheever A. W., Sher A. Endogenous interleukin 12 (IL-12) regulates granuloma formation induced by eggs of Schistosoma mansoni and exogenous IL-12 both inhibits and prophylactically immunizes against egg pathology. J Exp Med. 1994 May 1;179(5):1551–1561. doi: 10.1084/jem.179.5.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES