Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Oct 1;182(4):1045–1056. doi: 10.1084/jem.182.4.1045

Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration

PMCID: PMC2192290  PMID: 7561678

Abstract

The presence of natural killer (NK) cells contributes to early defense against murine cytomegalovirus (MCMV) infection. Although NK cells can mediate in vivo protection against MCMV, the mechanism by which they do so has not been defined. The studies presented here evaluate cytokine production by NK cells activated during MCMV infection and the role of NK cell-produced cytokines in early in vivo antiviral defenses. Experiments with normal C57BL/6, T cell-deficient C57BL/6 nude, and severe combined immunodeficient mice lacking T and B cells demonstrated that both interferon gamma (IFN-gamma) and tumor necrosis factor (TNF) production were induced at early times after infection with MCMV. Conditioned media samples prepared with cells from these mice, on day 2 after infection, produced 11-43 pg/million cells of IFN-gamma and 12-19 pg/million cells of TNF as evaluated by specific protein enzyme-linked immunosorbent assays. Studies in the NK- and T cell-deficient mouse line, E26, in mice that had been depleted in vivo of NK cells by treatment with antibodies eliminating NK cells, anti-asialo ganglio-N- tetraosylceramide or anti-NK1.1, and with populations of cells that had been depleted of NK cells by complement treatment with the anti-NK cell antibody, SW3A4, demonstrated that NK cells were solely responsible for the IFN-gamma but were not required for TNF production. The in vivo absence of NK cells was accompanied by increased viral hepatitis and viral replication in both immunocompetent and immunodeficient mice, as well as decreased survival time of immunodeficient mice. In vivo treatments with antibodies neutralizing IFN-gamma demonstrated that this factor contributed to the NK cell-mediated antiviral defense and reduced the measured parameters of viral defense to levels indistinguishable from those observed in NK cell-deficient mice. These effects appeared to be independent of cytolytic activity, as NK cells isolated from anti-IFN-gamma-treated mice mediated killing at levels comparable to those observed in control-treated mice. The consequences of interleukin 12 (IL-12) administration, a known potent inducer of IFN- gamma production by NK cells, were evaluated in MCMV-infected mice. Low IL-12 doses, i.e., 1 ng/d, increased NK cell cytotoxicity and IFN-gamma production up to twofold and resulted in improved antiviral status; virus-induced hepatitis was decreased as much as fivefold, and viral burdens were decreased to levels below detection.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams A., Mohrman M., Johnson A. G., Morin A., Deschamps de Paillette E. Polyadenylic:polyuridylic acid-induced protection of BALB/c mice against acute murine cytomegalovirus infection. J Gen Virol. 1992 Sep;73(Pt 9):2409–2413. doi: 10.1099/0022-1317-73-9-2409. [DOI] [PubMed] [Google Scholar]
  2. Bancroft G. J., Shellam G. R., Chalmer J. E. Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: correlation with patterns of resistance. J Immunol. 1981 Mar;126(3):988–994. [PubMed] [Google Scholar]
  3. Biron C. A., Young H. A., Kasaian M. T. Interleukin 2-induced proliferation of murine natural killer cells in vivo. J Exp Med. 1990 Jan 1;171(1):173–188. doi: 10.1084/jem.171.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bukowski J. F., Welsh R. M. Inability of interferon to protect virus-infected cells against lysis by natural killer (NK) cells correlates with NK cell-mediated antiviral effects in vivo. J Immunol. 1985 Nov;135(5):3537–3541. [PubMed] [Google Scholar]
  5. Bukowski J. F., Woda B. A., Habu S., Okumura K., Welsh R. M. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol. 1983 Sep;131(3):1531–1538. [PubMed] [Google Scholar]
  6. Bukowski J. F., Woda B. A., Welsh R. M. Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J Virol. 1984 Oct;52(1):119–128. doi: 10.1128/jvi.52.1.119-128.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chan S. H., Perussia B., Gupta J. W., Kobayashi M., Pospísil M., Young H. A., Wolf S. F., Young D., Clark S. C., Trinchieri G. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med. 1991 Apr 1;173(4):869–879. doi: 10.1084/jem.173.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cuturi M. C., Anegón I., Sherman F., Loudon R., Clark S. C., Perussia B., Trinchieri G. Production of hematopoietic colony-stimulating factors by human natural killer cells. J Exp Med. 1989 Feb 1;169(2):569–583. doi: 10.1084/jem.169.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. D'Andrea A., Rengaraju M., Valiante N. M., Chehimi J., Kubin M., Aste M., Chan S. H., Kobayashi M., Young D., Nickbarg E. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med. 1992 Nov 1;176(5):1387–1398. doi: 10.1084/jem.176.5.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dalton D. K., Pitts-Meek S., Keshav S., Figari I. S., Bradley A., Stewart T. A. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science. 1993 Mar 19;259(5102):1739–1742. doi: 10.1126/science.8456300. [DOI] [PubMed] [Google Scholar]
  11. Erlich K. S., Mills J., Shanley J. D. Effects of L3T4+ lymphocyte depletion on acute murine cytomegalovirus infection. J Gen Virol. 1989 Jul;70(Pt 7):1765–1771. doi: 10.1099/0022-1317-70-7-1765. [DOI] [PubMed] [Google Scholar]
  12. Gately M. K., Warrier R. R., Honasoge S., Carvajal D. M., Faherty D. A., Connaughton S. E., Anderson T. D., Sarmiento U., Hubbard B. R., Murphy M. Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-gamma in vivo. Int Immunol. 1994 Jan;6(1):157–167. doi: 10.1093/intimm/6.1.157. [DOI] [PubMed] [Google Scholar]
  13. Gazzinelli R. T., Wysocka M., Hayashi S., Denkers E. Y., Hieny S., Caspar P., Trinchieri G., Sher A. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol. 1994 Sep 15;153(6):2533–2543. [PubMed] [Google Scholar]
  14. Gidlund M., Orn A., Wigzell H., Senik A., Gresser I. Enhanced NK cell activity in mice injected with interferon and interferon inducers. Nature. 1978 Jun 29;273(5665):759–761. doi: 10.1038/273759a0. [DOI] [PubMed] [Google Scholar]
  15. Grundy J. E., Trapman J., Allan J. E., Shellam G. R., Melief C. J. Evidence for a protective role of interferon in resistance to murine cytomegalovirus and its control by non-H-2-linked genes. Infect Immun. 1982 Jul;37(1):143–150. doi: 10.1128/iai.37.1.143-150.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hengel H., Lucin P., Jonjić S., Ruppert T., Koszinowski U. H. Restoration of cytomegalovirus antigen presentation by gamma interferon combats viral escape. J Virol. 1994 Jan;68(1):289–297. doi: 10.1128/jvi.68.1.289-297.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jonjić S., Mutter W., Weiland F., Reddehase M. J., Koszinowski U. H. Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J Exp Med. 1989 Apr 1;169(4):1199–1212. doi: 10.1084/jem.169.4.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kobayashi M., Fitz L., Ryan M., Hewick R. M., Clark S. C., Chan S., Loudon R., Sherman F., Perussia B., Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989 Sep 1;170(3):827–845. doi: 10.1084/jem.170.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koo G. C., Peppard J. R. Establishment of monoclonal anti-Nk-1.1 antibody. Hybridoma. 1984 Fall;3(3):301–303. doi: 10.1089/hyb.1984.3.301. [DOI] [PubMed] [Google Scholar]
  20. Kunder S. C., Wu L., Morahan P. S. Role of NK cells in immunomodulator-mediated resistance to herpesvirus infection. Antiviral Res. 1993 Jun;21(2):103–118. doi: 10.1016/0166-3542(93)90047-m. [DOI] [PubMed] [Google Scholar]
  21. Lucin P., Jonjić S., Messerle M., Polić B., Hengel H., Koszinowski U. H. Late phase inhibition of murine cytomegalovirus replication by synergistic action of interferon-gamma and tumour necrosis factor. J Gen Virol. 1994 Jan;75(Pt 1):101–110. doi: 10.1099/0022-1317-75-1-101. [DOI] [PubMed] [Google Scholar]
  22. Lucin P., Pavić I., Polić B., Jonjić S., Koszinowski U. H. Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands. J Virol. 1992 Apr;66(4):1977–1984. doi: 10.1128/jvi.66.4.1977-1984.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McMichael A. J., Pilch J. R., Galfré G., Mason D. Y., Fabre J. W., Milstein C. A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol. 1979 Mar;9(3):205–210. doi: 10.1002/eji.1830090307. [DOI] [PubMed] [Google Scholar]
  24. Mutter W., Reddehase M. J., Busch F. W., Bühring H. J., Koszinowski U. H. Failure in generating hemopoietic stem cells is the primary cause of death from cytomegalovirus disease in the immunocompromised host. J Exp Med. 1988 May 1;167(5):1645–1658. doi: 10.1084/jem.167.5.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Naume B., Gately M., Espevik T. A comparative study of IL-12 (cytotoxic lymphocyte maturation factor)-, IL-2-, and IL-7-induced effects on immunomagnetically purified CD56+ NK cells. J Immunol. 1992 Apr 15;148(8):2429–2436. [PubMed] [Google Scholar]
  26. Orange J. S., Salazar-Mather T. P., Opal S. M., Spencer R. L., Miller A. H., McEwen B. S., Biron C. A. Mechanism of interleukin 12-mediated toxicities during experimental viral infections: role of tumor necrosis factor and glucocorticoids. J Exp Med. 1995 Mar 1;181(3):901–914. doi: 10.1084/jem.181.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Orange J. S., Wolf S. F., Biron C. A. Effects of IL-12 on the response and susceptibility to experimental viral infections. J Immunol. 1994 Feb 1;152(3):1253–1264. [PubMed] [Google Scholar]
  28. Pavić I., Polić B., Crnković I., Lucin P., Jonjić S., Koszinowski U. H. Participation of endogenous tumour necrosis factor alpha in host resistance to cytomegalovirus infection. J Gen Virol. 1993 Oct;74(Pt 10):2215–2223. doi: 10.1099/0022-1317-74-10-2215. [DOI] [PubMed] [Google Scholar]
  29. Quinnan G. V., Manischewitz J. E., Ennis F. A. Cytotoxic T lymphocyte response to murine cytomegalovirus infection. Nature. 1978 Jun 15;273(5663):541–543. doi: 10.1038/273541a0. [DOI] [PubMed] [Google Scholar]
  30. Quinnan G. V., Manischewitz J. E., Ennis P. A. Role of cytotoxic T lymphocytes in murine cytomegalovirus infection. J Gen Virol. 1980 Apr;47(2):503–508. doi: 10.1099/0022-1317-47-2-503. [DOI] [PubMed] [Google Scholar]
  31. Reddehase M. J., Mutter W., Münch K., Bühring H. J., Koszinowski U. H. CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol. 1987 Oct;61(10):3102–3108. doi: 10.1128/jvi.61.10.3102-3108.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reynolds R. P., Rahija R. J., Schenkman D. I., Richter C. B. Experimental murine cytomegalovirus infection in severe combined immunodeficient mice. Lab Anim Sci. 1993 Aug;43(4):291–295. [PubMed] [Google Scholar]
  33. Schut R. L., Gekker G., Hu S., Chao C. C., Pomeroy C., Jordan M. C., Peterson P. K. Cytomegalovirus replication in murine microglial cell cultures: suppression of permissive infection by interferon-gamma. J Infect Dis. 1994 May;169(5):1092–1096. doi: 10.1093/infdis/169.5.1092. [DOI] [PubMed] [Google Scholar]
  34. Selgrade M. K., Collier A. M., Saxton L., Daniels M. J., Graham J. A. Comparison of the pathogenesis of murine cytomegalovirus in lung and liver following intraperitoneal or intratracheal infection. J Gen Virol. 1984 Mar;65(Pt 3):515–523. doi: 10.1099/0022-1317-65-3-515. [DOI] [PubMed] [Google Scholar]
  35. Selgrade M. K., Nedrud J. G., Collier A. M., Gardner D. E. Effects of cell source, mouse strain, and immunosuppressive treatment on production of virulent and attenuated murine cytomegalovirus. Infect Immun. 1981 Sep;33(3):840–847. doi: 10.1128/iai.33.3.840-847.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Selgrade M. K., Osborn J. E. Role of macrophages in resistance to murine cytomegalovirus. Infect Immun. 1974 Dec;10(6):1383–1390. doi: 10.1128/iai.10.6.1383-1390.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sentman C. L., Hackett J., Jr, Moore T. A., Tutt M. M., Bennett M., Kumar V. Pan natural killer cell monoclonal antibodies and their relationship to the NK1.1 antigen. Hybridoma. 1989 Dec;8(6):605–614. doi: 10.1089/hyb.1989.8.605. [DOI] [PubMed] [Google Scholar]
  38. Shanley J. D., Biczak L., Forman S. J. Acute murine cytomegalovirus infection induces lethal hepatitis. J Infect Dis. 1993 Feb;167(2):264–269. doi: 10.1093/infdis/167.2.264. [DOI] [PubMed] [Google Scholar]
  39. Shellam G. R., Allan J. E., Papadimitriou J. M., Bancroft G. J. Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5104–5108. doi: 10.1073/pnas.78.8.5104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stout R. D. Macrophage activation by T cells: cognate and non-cognate signals. Curr Opin Immunol. 1993 Jun;5(3):398–403. doi: 10.1016/0952-7915(93)90059-2. [DOI] [PubMed] [Google Scholar]
  41. Su H. C., Ishikawa R., Biron C. A. Transforming growth factor-beta expression and natural killer cell responses during virus infection of normal, nude, and SCID mice. J Immunol. 1993 Nov 1;151(9):4874–4890. [PubMed] [Google Scholar]
  42. Su H. C., Orange J. S., Fast L. D., Chan A. T., Simpson S. J., Terhorst C., Biron C. A. IL-2-dependent NK cell responses discovered in virus-infected beta 2-microglobulin-deficient mice. J Immunol. 1994 Dec 15;153(12):5674–5681. [PubMed] [Google Scholar]
  43. Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood. 1994 Dec 15;84(12):4008–4027. [PubMed] [Google Scholar]
  44. Tripp C. S., Wolf S. F., Unanue E. R. Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3725–3729. doi: 10.1073/pnas.90.8.3725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wang B., Biron C., She J., Higgins K., Sunshine M. J., Lacy E., Lonberg N., Terhorst C. A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3E gene. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9402–9406. doi: 10.1073/pnas.91.20.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Welsh R. M., Biron C. A., Bukowski J. F., McIntyre K. W., Yang H. Role of natural killer cells in virus infections of mice. Surv Synth Pathol Res. 1984;3(5):409–431. doi: 10.1159/000156943. [DOI] [PubMed] [Google Scholar]
  47. Welsh R. M., Dundon P. L., Eynon E. E., Brubaker J. O., Koo G. C., O'Donnell C. L. Demonstration of the antiviral role of natural killer cells in vivo with a natural killer cell-specific monoclonal antibody (NK 1.1). Nat Immun Cell Growth Regul. 1990;9(2):112–120. [PubMed] [Google Scholar]
  48. Williams J. G., Jurkovich G. J., Hahnel G. B., Maier R. V. Macrophage priming by interferon gamma: a selective process with potentially harmful effects. J Leukoc Biol. 1992 Dec;52(6):579–584. doi: 10.1002/jlb.52.6.579. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES