Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Oct 1;182(4):1133–1141. doi: 10.1084/jem.182.4.1133

De novo expression of endothelial sialyl Lewis(a) and sialyl Lewis(x) during cardiac transplant rejection: superior capacity of a tetravalent sialyl Lewis(x) oligosaccharide in inhibiting L-selectin-dependent lymphocyte adhesion

PMCID: PMC2192292  PMID: 7561686

Abstract

Acute organ transplant rejection is characterized by a heavy lymphocyte infiltration. We have previously shown that alterations in the graft endothelium lead to increased lymphocyte traffic into the graft. Here, we demonstrate that lymphocytes adhere to the endothelium of rejecting cardiac transplants, but not to the endothelium of syngeneic grafts or normal hearts analyzed with the in vitro Stamper-Woodruff binding assay. Concomitant with the enhanced lymphocyte adhesion, the cardiac endothelium begins to de novo express sialyl Lewis(a) and sialyl Lewis(x) (sLea and sLex) epitopes, which have been shown to be sequences of L-selectin counterreceptors. The endothelium of allografts, but not that of syngeneic grafts or normal controls, also reacted with the L-selectin-immunoglobulin G fusion protein, giving further proof of inducible L-selectin counterreceptors. The lymphocyte adhesion to endothelium could be significantly decreased either by treating the lymphocytes with anti-L-selectin antibody HRL-1, or by treating the tissue sections with sialidase or anti-sLea or anti-sLex monoclonal antibodies. Finally, we synthetized enzymatically several members of the sLex family oligosaccharides and analyzed their ability to block lymphocyte adhesion to cardiac endothelium. The monovalent sLex (a tetramer), divalent sLex (a decamer), and tetravalent sLex (a 22-mer) could all significantly reduce lymphocyte binding, but the inhibition by the tetravalent sLex-construct was clearly superior to other members of the sLex family. The crucial control oligosaccharides, sialyl lactosamines lacking fucose but being otherwise similar to the members of sLex family, had no effect on lymphocyte binding.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumheter S., Singer M. S., Henzel W., Hemmerich S., Renz M., Rosen S. D., Lasky L. A. Binding of L-selectin to the vascular sialomucin CD34. Science. 1993 Oct 15;262(5132):436–438. doi: 10.1126/science.7692600. [DOI] [PubMed] [Google Scholar]
  2. Berg E. L., McEvoy L. M., Berlin C., Bargatze R. F., Butcher E. C. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature. 1993 Dec 16;366(6456):695–698. doi: 10.1038/366695a0. [DOI] [PubMed] [Google Scholar]
  3. Briscoe D. M., Schoen F. J., Rice G. E., Bevilacqua M. P., Ganz P., Pober J. S. Induced expression of endothelial-leukocyte adhesion molecules in human cardiac allografts. Transplantation. 1991 Feb;51(2):537–539. [PubMed] [Google Scholar]
  4. Briskin M. J., McEvoy L. M., Butcher E. C. MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgA1. Nature. 1993 Jun 3;363(6428):461–464. doi: 10.1038/363461a0. [DOI] [PubMed] [Google Scholar]
  5. Buerke M., Weyrich A. S., Zheng Z., Gaeta F. C., Forrest M. J., Lefer A. M. Sialyl Lewisx-containing oligosaccharide attenuates myocardial reperfusion injury in cats. J Clin Invest. 1994 Mar;93(3):1140–1148. doi: 10.1172/JCI117066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butcher E. C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991 Dec 20;67(6):1033–1036. doi: 10.1016/0092-8674(91)90279-8. [DOI] [PubMed] [Google Scholar]
  7. Carlos T. M., Harlan J. M. Leukocyte-endothelial adhesion molecules. Blood. 1994 Oct 1;84(7):2068–2101. [PubMed] [Google Scholar]
  8. Foxall C., Watson S. R., Dowbenko D., Fennie C., Lasky L. A., Kiso M., Hasegawa A., Asa D., Brandley B. K. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J Cell Biol. 1992 May;117(4):895–902. doi: 10.1083/jcb.117.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gallatin W. M., Weissman I. L., Butcher E. C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983 Jul 7;304(5921):30–34. doi: 10.1038/304030a0. [DOI] [PubMed] [Google Scholar]
  10. Green P. J., Tamatani T., Watanabe T., Miyasaka M., Hasegawa A., Kiso M., Yuen C. T., Stoll M. S., Feizi T. High affinity binding of the leucocyte adhesion molecule L-selectin to 3'-sulphated-Le(a) and -Le(x) oligosaccharides and the predominance of sulphate in this interaction demonstrated by binding studies with a series of lipid-linked oligosaccharides. Biochem Biophys Res Commun. 1992 Oct 15;188(1):244–251. doi: 10.1016/0006-291x(92)92376-9. [DOI] [PubMed] [Google Scholar]
  11. Hemmerich S., Rosen S. D. 6'-sulfated sialyl Lewis x is a major capping group of GlyCAM-1. Biochemistry. 1994 Apr 26;33(16):4830–4835. doi: 10.1021/bi00182a011. [DOI] [PubMed] [Google Scholar]
  12. Hogg N. Roll, roll, roll your leucocyte gently down the vein.... Immunol Today. 1992 Apr;13(4):113–115. doi: 10.1016/0167-5699(92)90103-E. [DOI] [PubMed] [Google Scholar]
  13. Häyry P., von Willebrand E., Parthenais E., Nemlander A., Soots A., Lautenschlager I., Alfoldy P., Renkonen R. The inflammatory mechanisms of allograft rejection. Immunol Rev. 1984;77:85–142. doi: 10.1111/j.1600-065x.1984.tb00719.x. [DOI] [PubMed] [Google Scholar]
  14. Imai Y., Lasky L. A., Rosen S. D. Further characterization of the interaction between L-selectin and its endothelial ligands. Glycobiology. 1992 Aug;2(4):373–381. doi: 10.1093/glycob/2.4.373. [DOI] [PubMed] [Google Scholar]
  15. Imai Y., Lasky L. A., Rosen S. D. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature. 1993 Feb 11;361(6412):555–557. doi: 10.1038/361555a0. [DOI] [PubMed] [Google Scholar]
  16. Ito K., Handa K., Hakomori S. Species-specific expression of sialosyl-Le(x) on polymorphonuclear leukocytes (PMN), in relation to selectin-dependent PMN responses. Glycoconj J. 1994 Jun;11(3):232–237. doi: 10.1007/BF00731223. [DOI] [PubMed] [Google Scholar]
  17. Lasky L. A. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science. 1992 Nov 6;258(5084):964–969. doi: 10.1126/science.1439808. [DOI] [PubMed] [Google Scholar]
  18. Lasky L. A., Singer M. S., Dowbenko D., Imai Y., Henzel W. J., Grimley C., Fennie C., Gillett N., Watson S. R., Rosen S. D. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell. 1992 Jun 12;69(6):927–938. doi: 10.1016/0092-8674(92)90612-g. [DOI] [PubMed] [Google Scholar]
  19. Majuri M. L., Pinola M., Niemelä R., Tiisala S., Natunen J., Renkonen O., Renkonen R. Alpha 2,3-sialyl and alpha 1,3-fucosyltransferase-dependent synthesis of sialyl Lewis x, an essential oligosaccharide present on L-selectin counterreceptors, in cultured endothelial cells. Eur J Immunol. 1994 Dec;24(12):3205–3210. doi: 10.1002/eji.1830241244. [DOI] [PubMed] [Google Scholar]
  20. Mulligan M. S., Paulson J. C., De Frees S., Zheng Z. L., Lowe J. B., Ward P. A. Protective effects of oligosaccharides in P-selectin-dependent lung injury. Nature. 1993 Jul 8;364(6433):149–151. doi: 10.1038/364149a0. [DOI] [PubMed] [Google Scholar]
  21. Munro J. M., Lo S. K., Corless C., Robertson M. J., Lee N. C., Barnhill R. L., Weinberg D. S., Bevilacqua M. P. Expression of sialyl-Lewis X, an E-selectin ligand, in inflammation, immune processes, and lymphoid tissues. Am J Pathol. 1992 Dec;141(6):1397–1408. [PMC free article] [PubMed] [Google Scholar]
  22. Natunen J., Niemelä R., Penttilä L., Seppo A., Ruohtula T., Renkonen O. Enzymatic synthesis of two lacto-N-neohexaose-related Lewis x heptasaccharides and their separation by chromatography on immobilized wheat germ agglutinin. Glycobiology. 1994 Oct;4(5):577–583. doi: 10.1093/glycob/4.5.577. [DOI] [PubMed] [Google Scholar]
  23. Paavonen T., Renkonen R. Selective expression of sialyl-Lewis x and Lewis a epitopes, putative ligands for L-selectin, on peripheral lymph-node high endothelial venules. Am J Pathol. 1992 Dec;141(6):1259–1264. [PMC free article] [PubMed] [Google Scholar]
  24. Pelletier R. P., Morgan C. J., Sedmak D. D., Miyake K., Kincade P. W., Ferguson R. M., Orosz C. G. Analysis of inflammatory endothelial changes, including VCAM-1 expression, in murine cardiac grafts. Transplantation. 1993 Feb;55(2):315–320. doi: 10.1097/00007890-199302000-00017. [DOI] [PubMed] [Google Scholar]
  25. Pelletier R. P., Ohye R. G., Vanbuskirk A., Sedmak D. D., Kincade P., Ferguson R. M., Orosz C. G. Importance of endothelial VCAM-1 for inflammatory leukocytic infiltration in vivo. J Immunol. 1992 Oct 1;149(7):2473–2481. [PubMed] [Google Scholar]
  26. Qiao J. H., Ruan X. M., Trento A., Czer L. S., Blanche C., Fishbein M. C. Expression of cell adhesion molecules in human cardiac allograft rejection. J Heart Lung Transplant. 1992 Sep-Oct;11(5):920–925. [PubMed] [Google Scholar]
  27. Renkonen R., Soots A., von Willebrand E., Häyry P. Lymphoid cell subclasses in rejecting renal allograft in the rat. Cell Immunol. 1983 Apr 1;77(1):187–195. doi: 10.1016/0008-8749(83)90018-7. [DOI] [PubMed] [Google Scholar]
  28. Renkonen R., Turunen J. P., Rapola J., Häyry P. Characterization of high endothelial-like properties of peritubular capillary endothelium during acute renal allograft rejection. Am J Pathol. 1990 Sep;137(3):643–651. [PMC free article] [PubMed] [Google Scholar]
  29. Rosen S. D., Bertozzi C. R. The selectins and their ligands. Curr Opin Cell Biol. 1994 Oct;6(5):663–673. doi: 10.1016/0955-0674(94)90092-2. [DOI] [PubMed] [Google Scholar]
  30. Rosen S. D., Singer M. S., Yednock T. A., Stoolman L. M. Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science. 1985 May 24;228(4702):1005–1007. doi: 10.1126/science.4001928. [DOI] [PubMed] [Google Scholar]
  31. Sawada M., Takada A., Ohwaki I., Takahashi N., Tateno H., Sakamoto J., Kannagi R. Specific expression of a complex sialyl Lewis X antigen on high endothelial venules of human lymph nodes: possible candidate for L-selectin ligand. Biochem Biophys Res Commun. 1993 May 28;193(1):337–347. doi: 10.1006/bbrc.1993.1629. [DOI] [PubMed] [Google Scholar]
  32. Shimizu Y., Shaw S. Cell adhesion. Mucins in the mainstream. Nature. 1993 Dec 16;366(6456):630–631. doi: 10.1038/366630a0. [DOI] [PubMed] [Google Scholar]
  33. Shimizu Y., Shaw S., Graber N., Gopal T. V., Horgan K. J., Van Seventer G. A., Newman W. Activation-independent binding of human memory T cells to adhesion molecule ELAM-1. Nature. 1991 Feb 28;349(6312):799–802. doi: 10.1038/349799a0. [DOI] [PubMed] [Google Scholar]
  34. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  35. Suzuki Y., Toda Y., Tamatani T., Watanabe T., Suzuki T., Nakao T., Murase K., Kiso M., Hasegawa A., Tadano-Aritomi K. Sulfated glycolipids are ligands for a lymphocyte homing receptor, L-selectin (LECAM-1), Binding epitope in sulfated sugar chain. Biochem Biophys Res Commun. 1993 Jan 29;190(2):426–434. doi: 10.1006/bbrc.1993.1065. [DOI] [PubMed] [Google Scholar]
  36. Tamatani T., Kitamura F., Kuida K., Shirao M., Mochizuki M., Suematsu M., Schmid-Schönbein G. W., Watanabe K., Tsurufuji S., Miyasaka M. Characterization of rat LECAM-1 (L-selectin) by the use of monoclonal antibodies and evidence for the presence of soluble LECAM-1 in rat sera. Eur J Immunol. 1993 Sep;23(9):2181–2188. doi: 10.1002/eji.1830230920. [DOI] [PubMed] [Google Scholar]
  37. Tamatani T., Kuida K., Watanabe T., Koike S., Miyasaka M. Molecular mechanisms underlying lymphocyte recirculation. III. Characterization of the LECAM-1 (L-selectin)-dependent adhesion pathway in rats. J Immunol. 1993 Mar 1;150(5):1735–1745. [PubMed] [Google Scholar]
  38. Taylor P. M., Rose M. L., Yacoub M. H., Pigott R. Induction of vascular adhesion molecules during rejection of human cardiac allografts. Transplantation. 1992 Sep;54(3):451–457. doi: 10.1097/00007890-199209000-00013. [DOI] [PubMed] [Google Scholar]
  39. Turunen J. P., Mattila P., Halttunen J., Häyry P., Renkonen R. Evidence that lymphocyte traffic into rejecting cardiac allografts is CD11a- and CD49d-dependent. Transplantation. 1992 Dec;54(6):1053–1058. doi: 10.1097/00007890-199212000-00020. [DOI] [PubMed] [Google Scholar]
  40. Turunen J. P., Paavonen T., Majuri M. L., Tiisala S., Mattila P., Mennander A., Gahmberg C. G., Häyry P., Tamatani T., Miyasaka M. Sialyl Lewis(x)- and L-selectin-dependent site-specific lymphocyte extravasation into renal transplants during acute rejection. Eur J Immunol. 1994 May;24(5):1130–1136. doi: 10.1002/eji.1830240518. [DOI] [PubMed] [Google Scholar]
  41. Vilkman A., Niemelä R., Penttilä L., Helin J., Leppänen A., Seppo A., Maaheimo H., Lusa S., Renkonen O. Elongation of both branches of biantennary backbones of oligo-(N-acetyllactosamino)glycans by human serum (1----3)-N-acetyl-beta-D- glucosaminyltransferase. Carbohydr Res. 1992 Mar 16;226(1):155–174. doi: 10.1016/0008-6215(92)84061-v. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES