Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Oct 1;182(4):983–992. doi: 10.1084/jem.182.4.983

52-kD SS-A/Ro: genomic structure and identification of an alternatively spliced transcript encoding a novel leucine zipper-minus autoantigen expressed in fetal and adult heart

PMCID: PMC2192297  PMID: 7561701

Abstract

The 52-kD SS-A/Ro protein is one of the antigenic targets strongly associated with the autoimmune response in mothers whose children have manifestations of neonatal lupus. In addition to the cDNA clone we previously reported for the full-length 52-kD SS-A/Ro protein, an interesting MOLT-4 cDNA clone, p52-2, was found to have an internal deletion of 231 nucleotides including the domain encoding the leucine zipper motif. To further investigate the nature of this deletion, genomic DNA clones were isolated from a lambda FIXII library. The complete gene for the full-length 52-kD protein (alpha form, 52 alpha) spans 10 kb of DNA and is composed of seven exons. Exon 1 contains only the 5' untranslated sequence, while the translation initiation codon is located 3 kb downstream in exon 2, which also encodes the three zinc finger motifs. Exon 4 encodes amino acids 168-245, including the coiled coil/leucine zipper domain. Exon 7 is the longest and encodes the rfp- like domain and the 3' untranslated region. The cDNA p52-2 can now be accounted for as a product of alternative messenger RNA (mRNA) derived from the splicing of exon 3 to exon 5, skipping exon 4, which results in a smaller protein (52 beta) with a predicted molecular weight of 45,000. An initial approach to identifying this alternatively spliced form in the human heart used a ribonuclease protection assay. Using an RNA probe corresponding to bases 674-964 of the full-length cDNA, two protected mRNA fragments were identified, a 290-bp fragment corresponding to expression of 52 alpha and a smaller fragment of 144 bp, the predicted size of 52 beta. Using reverse transcription followed by polymerase chain reaction, cDNAs from a 16-wk fetal heart, 24-wk heart, and adult heart were amplified with primers flanking exon 4. Two polymerase chain reaction products were observed in each tissue, one 1.0 kb likely representing 52 alpha and a second 0.78 kb, consistent with 52 beta. The 0.78-kb fragment identified in the 16-wk heart was cloned, and DNA sequencing confirmed the 52 beta type. Immunoprecipitation of in vitro-translated 35S-labeled 52 beta form was performed to evaluate the antigenicity of this novel form of 52-kD SS- A/Ro. 26 (87%) of 30 sera tested from mothers whose children were known to have neonatal lupus immunoprecipitated the 52 beta form.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Chetrit E., Gandy B. J., Tan E. M., Sullivan K. F. Isolation and characterization of a cDNA clone encoding the 60-kD component of the human SS-A/Ro ribonucleoprotein autoantigen. J Clin Invest. 1989 Apr;83(4):1284–1292. doi: 10.1172/JCI114013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bingham P. M., Chou T. B., Mims I., Zachar Z. On/off regulation of gene expression at the level of splicing. Trends Genet. 1988 May;4(5):134–138. doi: 10.1016/0168-9525(88)90136-9. [DOI] [PubMed] [Google Scholar]
  3. Boire G., Lopez-Longo F. J., Lapointe S., Ménard H. A. Sera from patients with autoimmune disease recognize conformational determinants on the 60-kd Ro/SS-A protein. Arthritis Rheum. 1991 Jun;34(6):722–730. doi: 10.1002/art.1780340613. [DOI] [PubMed] [Google Scholar]
  4. Bozic B., Pruijn G. J., Rozman B., van Venrooij W. J. Sera from patients with rheumatic diseases recognize different epitope regions on the 52-kD Ro/SS-A protein. Clin Exp Immunol. 1993 Nov;94(2):227–235. doi: 10.1111/j.1365-2249.1993.tb03436.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buyon J. P., Slade S. G., Chan E. K., Tan E. M., Winchester R. Effective separation of the 52 kDa SSA/Ro polypeptide from the 48 kDa SSB/La polypeptide by altering conditions of polyacrylamide gel electrophoresis. J Immunol Methods. 1990 May 25;129(2):207–210. doi: 10.1016/0022-1759(90)90440-7. [DOI] [PubMed] [Google Scholar]
  6. Buyon J. P., Slade S. G., Reveille J. D., Hamel J. C., Chan E. K. Autoantibody responses to the "native" 52-kDa SS-A/Ro protein in neonatal lupus syndromes, systemic lupus erythematosus, and Sjogren's syndrome. J Immunol. 1994 Apr 1;152(7):3675–3684. [PubMed] [Google Scholar]
  7. Buyon J. P., Winchester R. J., Slade S. G., Arnett F., Copel J., Friedman D., Lockshin M. D. Identification of mothers at risk for congenital heart block and other neonatal lupus syndromes in their children. Comparison of enzyme-linked immunosorbent assay and immunoblot for measurement of anti-SS-A/Ro and anti-SS-B/La antibodies. Arthritis Rheum. 1993 Sep;36(9):1263–1273. doi: 10.1002/art.1780360911. [DOI] [PubMed] [Google Scholar]
  8. Chan E. K., Hamel J. C., Buyon J. P., Tan E. M. Molecular definition and sequence motifs of the 52-kD component of human SS-A/Ro autoantigen. J Clin Invest. 1991 Jan;87(1):68–76. doi: 10.1172/JCI115003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Daniels T. E. Labial salivary gland biopsy in Sjögren's syndrome. Assessment as a diagnostic criterion in 362 suspected cases. Arthritis Rheum. 1984 Feb;27(2):147–156. doi: 10.1002/art.1780270205. [DOI] [PubMed] [Google Scholar]
  11. Deutscher S. L., Harley J. B., Keene J. D. Molecular analysis of the 60-kDa human Ro ribonucleoprotein. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9479–9483. doi: 10.1073/pnas.85.24.9479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  13. Fox R. I., Robinson C. A., Curd J. G., Kozin F., Howell F. V. Sjögren's syndrome. Proposed criteria for classification. Arthritis Rheum. 1986 May;29(5):577–585. doi: 10.1002/art.1780290501. [DOI] [PubMed] [Google Scholar]
  14. Frank M. B., Itoh K., Fujisaku A., Pontarotti P., Mattei M. G., Neas B. R. The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome 11, and its polymorphisms. Am J Hum Genet. 1993 Jan;52(1):183–191. [PMC free article] [PubMed] [Google Scholar]
  15. Frank M. B., Itoh K., McCubbin V. Epitope mapping of the 52-kD Ro/SSA autoantigen. Clin Exp Immunol. 1994 Mar;95(3):390–396. doi: 10.1111/j.1365-2249.1994.tb07009.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirzmann J., Luo D., Hahnen J., Hobom G. Determination of messenger RNA 5'-ends by reverse transcription of the cap structure. Nucleic Acids Res. 1993 Jul 25;21(15):3597–3598. doi: 10.1093/nar/21.15.3597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Itoh K., Itoh Y., Frank M. B. Protein heterogeneity in the human Ro/SSA ribonucleoproteins. The 52- and 60-kD Ro/SSA autoantigens are encoded by separate genes. J Clin Invest. 1991 Jan;87(1):177–186. doi: 10.1172/JCI114968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Julkunen H., Kurki P., Kaaja R., Heikkilä R., Immonen I., Chan E. K., Wallgren E., Friman C. Isolated congenital heart block. Long-term outcome of mothers and characterization of the immune response to SS-A/Ro and to SS-B/La. Arthritis Rheum. 1993 Nov;36(11):1588–1598. doi: 10.1002/art.1780361114. [DOI] [PubMed] [Google Scholar]
  19. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krieg P. A., Melton D. A. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 1987;155:397–415. doi: 10.1016/0076-6879(87)55027-3. [DOI] [PubMed] [Google Scholar]
  21. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  22. Lee L. A., Frank M. B., McCubbin V. R., Reichlin M. Autoantibodies of neonatal lupus erythematosus. J Invest Dermatol. 1994 Jun;102(6):963–966. doi: 10.1111/1523-1747.ep12384148. [DOI] [PubMed] [Google Scholar]
  23. Meilof J. F., Frohn-Mulder I. M., Stewart P. A., Szatmari A., Hess J., Veldhoven C. H., Smeenk R. J., Swaak A. J. Maternal autoantibodies and congenital heart block: no evidence for the existence of a unique heart block-associated anti-Ro/SS-A autoantibody profile. Lupus. 1993 Aug;2(4):239–246. doi: 10.1177/096120339300200406. [DOI] [PubMed] [Google Scholar]
  24. Miki Y., Swensen J., Shattuck-Eidens D., Futreal P. A., Harshman K., Tavtigian S., Liu Q., Cochran C., Bennett L. M., Ding W. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994 Oct 7;266(5182):66–71. doi: 10.1126/science.7545954. [DOI] [PubMed] [Google Scholar]
  25. Patarca R., Freeman G. J., Schwartz J., Singh R. P., Kong Q. T., Murphy E., Anderson Y., Sheng F. Y., Singh P., Johnson K. A. rpt-1, an intracellular protein from helper/inducer T cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2733–2737. doi: 10.1073/pnas.85.8.2733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takahashi M., Inaguma Y., Hiai H., Hirose F. Developmentally regulated expression of a human "finger"-containing gene encoded by the 5' half of the ret transforming gene. Mol Cell Biol. 1988 Apr;8(4):1853–1856. doi: 10.1128/mcb.8.4.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tan E. M., Cohen A. S., Fries J. F., Masi A. T., McShane D. J., Rothfield N. F., Schaller J. G., Talal N., Winchester R. J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982 Nov;25(11):1271–1277. doi: 10.1002/art.1780251101. [DOI] [PubMed] [Google Scholar]
  29. Taniguchi M., Iwamoto T., Hamaguchi M., Matsuyama M., Takahashi M. The ret oncogene products are membrane-bound glycoproteins phosphorylated on tyrosine residues in vivo. Biochem Biophys Res Commun. 1991 Nov 27;181(1):416–422. doi: 10.1016/s0006-291x(05)81435-4. [DOI] [PubMed] [Google Scholar]
  30. Tröster H., Metzger T. E., Semsei I., Schwemmle M., Winterpacht A., Zabel B., Bachmann M. One gene, two transcripts: isolation of an alternative transcript encoding for the autoantigen La/SS-B from a cDNA library of a patient with primary Sjögrens' syndrome. J Exp Med. 1994 Dec 1;180(6):2059–2067. doi: 10.1084/jem.180.6.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tsugu H., Horowitz R., Gibson N., Frank M. B. The location of a disease-associated polymorphism and genomic structure of the human 52-kDa Ro/SSA locus (SSA1). Genomics. 1994 Dec;24(3):541–548. doi: 10.1006/geno.1994.1664. [DOI] [PubMed] [Google Scholar]
  32. Waltuck J., Buyon J. P. Autoantibody-associated congenital heart block: outcome in mothers and children. Ann Intern Med. 1994 Apr 1;120(7):544–551. doi: 10.7326/0003-4819-120-7-199404010-00003. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES