Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Mar 1;183(3):1083–1092. doi: 10.1084/jem.183.3.1083

Major histocompatibility complex class II-associated peptides control the presentation of bacterial superantigens to T cells

PMCID: PMC2192316  PMID: 8642250

Abstract

Recent studies have shown that only a subset of major histocompatibility complex (MHC) class II molecules are able to present bacterial superantigens to T cells, leading to the suggestion that class-II associated peptides may influence superantigen presentation. Here, we have assessed the potential role of peptides on superantigen presentation by (a) analyzing the ability of superantigens to block peptide-specific T cell responses and (b) analyzing the ability of individual peptides to promote superantigen presentation on I-Ab- expressing T2 cells that have a quantitative defect in antigen processing. A series of peptides is described that specifically promote either toxic shock syndrome toxin (TSST) 1 or staphylococcal enterotoxin A (SEA) presentation. Whereas some peptides promoted the presentation of TSST-1 (almost 5,000-fold in the case of one peptide), other peptides promoted the presentation of SEA. These data demonstrate that MHC class II-associated peptides differentially influence the presentation of bacterial superantigens to T cells.

Full Text

The Full Text of this article is available as a PDF (966.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya K. R., Passalacqua E. F., Jones E. Y., Harlos K., Stuart D. I., Brehm R. D., Tranter H. S. Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature. 1994 Jan 6;367(6458):94–97. doi: 10.1038/367094a0. [DOI] [PubMed] [Google Scholar]
  2. Allen P. M., Matsueda G. R., Haber E., Unanue E. R. Specificity of the T cell receptor: two different determinants are generated by the same peptide and the I-Ak molecule. J Immunol. 1985 Jul;135(1):368–373. [PubMed] [Google Scholar]
  3. Allen P. M., McKean D. J., Beck B. N., Sheffield J., Glimcher L. H. Direct evidence that a class II molecule and a simple globular protein generate multiple determinants. J Exp Med. 1985 Oct 1;162(4):1264–1274. doi: 10.1084/jem.162.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brocke S., Gaur A., Piercy C., Gautam A., Gijbels K., Fathman C. G., Steinman L. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature. 1993 Oct 14;365(6447):642–644. doi: 10.1038/365642a0. [DOI] [PubMed] [Google Scholar]
  5. Cerundolo V., Alexander J., Anderson K., Lamb C., Cresswell P., McMichael A., Gotch F., Townsend A. Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nature. 1990 May 31;345(6274):449–452. doi: 10.1038/345449a0. [DOI] [PubMed] [Google Scholar]
  6. Chintagumpala M. M., Mollick J. A., Rich R. R. Staphylococcal toxins bind to different sites on HLA-DR. J Immunol. 1991 Dec 1;147(11):3876–3881. [PubMed] [Google Scholar]
  7. Cole G. A., Katz J. M., Hogg T. L., Ryan K. W., Portner A., Woodland D. L. Analysis of the primary T-cell response to Sendai virus infection in C57BL/6 mice: CD4+ T-cell recognition is directed predominantly to the hemagglutinin-neuraminidase glycoprotein. J Virol. 1994 Nov;68(11):6863–6870. doi: 10.1128/jvi.68.11.6863-6870.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cole G. A., Tao T., Hogg T. L., Ryan K. W., Woodland D. L. Binding motifs predict major histocompatibility complex class II-restricted epitopes in the Sendai virus M protein. J Virol. 1995 Dec;69(12):8057–8060. doi: 10.1128/jvi.69.12.8057-8060.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deckhut A. M., Chien Y., Blackman M. A., Woodland D. L. Evidence for a functional interaction between the beta chain of major histocompatibility complex class II and the T cell receptor alpha chain during recognition of a bacterial superantigen. J Exp Med. 1994 Nov 1;180(5):1931–1935. doi: 10.1084/jem.180.5.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dellabona P., Peccoud J., Kappler J., Marrack P., Benoist C., Mathis D. Superantigens interact with MHC class II molecules outside of the antigen groove. Cell. 1990 Sep 21;62(6):1115–1121. doi: 10.1016/0092-8674(90)90388-u. [DOI] [PubMed] [Google Scholar]
  11. Dowd J. E., Jenkins R. N., Karp D. R. Inhibition of antigen-specific T cell activation by staphylococcal enterotoxins. J Immunol. 1995 Feb 1;154(3):1024–1031. [PubMed] [Google Scholar]
  12. Ehrich E. W., Devaux B., Rock E. P., Jorgensen J. L., Davis M. M., Chien Y. H. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J Exp Med. 1993 Aug 1;178(2):713–722. doi: 10.1084/jem.178.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fleischer B., Schrezenmeier H. T cell stimulation by staphylococcal enterotoxins. Clonally variable response and requirement for major histocompatibility complex class II molecules on accessory or target cells. J Exp Med. 1988 May 1;167(5):1697–1707. doi: 10.1084/jem.167.5.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fling S. P., Arp B., Pious D. HLA-DMA and -DMB genes are both required for MHC class II/peptide complex formation in antigen-presenting cells. Nature. 1994 Apr 7;368(6471):554–558. doi: 10.1038/368554a0. [DOI] [PubMed] [Google Scholar]
  15. Gaur A., Fathman C. G., Steinman L., Brocke S. SEB induced anergy: modulation of immune response to T cell determinants of myoglobin and myelin basic protein. J Immunol. 1993 Apr 1;150(7):3062–3069. [PubMed] [Google Scholar]
  16. Germain R. N., Hendrix L. R. MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding. Nature. 1991 Sep 12;353(6340):134–139. doi: 10.1038/353134a0. [DOI] [PubMed] [Google Scholar]
  17. Herman A., Croteau G., Sekaly R. P., Kappler J., Marrack P. HLA-DR alleles differ in their ability to present staphylococcal enterotoxins to T cells. J Exp Med. 1990 Sep 1;172(3):709–717. doi: 10.1084/jem.172.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herman A., Kappler J. W., Marrack P., Pullen A. M. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu Rev Immunol. 1991;9:745–772. doi: 10.1146/annurev.iy.09.040191.003525. [DOI] [PubMed] [Google Scholar]
  19. Herrmann T., Accolla R. S., MacDonald H. R. Different staphylococcal enterotoxins bind preferentially to distinct major histocompatibility complex class II isotypes. Eur J Immunol. 1989 Nov;19(11):2171–2174. doi: 10.1002/eji.1830191131. [DOI] [PubMed] [Google Scholar]
  20. Hudson K. R., Tiedemann R. E., Urban R. G., Lowe S. C., Strominger J. L., Fraser J. D. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. J Exp Med. 1995 Sep 1;182(3):711–720. doi: 10.1084/jem.182.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jardetzky T. S., Brown J. H., Gorga J. C., Stern L. J., Urban R. G., Chi Y. I., Stauffacher C., Strominger J. L., Wiley D. C. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature. 1994 Apr 21;368(6473):711–718. doi: 10.1038/368711a0. [DOI] [PubMed] [Google Scholar]
  22. Kim J., Urban R. G., Strominger J. L., Wiley D. C. Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1. Science. 1994 Dec 16;266(5192):1870–1874. doi: 10.1126/science.7997880. [DOI] [PubMed] [Google Scholar]
  23. Kozono H., Parker D., White J., Marrack P., Kappler J. Multiple binding sites for bacterial superantigens on soluble class II MHC molecules. Immunity. 1995 Aug;3(2):187–196. doi: 10.1016/1074-7613(95)90088-8. [DOI] [PubMed] [Google Scholar]
  24. Labrecque N., Thibodeau J., Mourad W., Sékaly R. P. T cell receptor-major histocompatibility complex class II interaction is required for the T cell response to bacterial superantigens. J Exp Med. 1994 Nov 1;180(5):1921–1929. doi: 10.1084/jem.180.5.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marrack P., Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990 May 11;248(4956):705–711. doi: 10.1126/science.2185544. [DOI] [PubMed] [Google Scholar]
  26. Masewicz S., Ledbetter J. A., Martin P., Mickelson E., Hansen J. A., Odum N. Inhibition of allostimulated HLA-DQ and DP-specific T cells by staphylococcal enterotoxin A. Hum Immunol. 1993 Mar;36(3):142–148. doi: 10.1016/0198-8859(93)90117-j. [DOI] [PubMed] [Google Scholar]
  27. McCormack J. E., Kappler J., Marrack P. Stimulation with specific antigen can block superantigen-mediated deletion of T cells in vivo. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2086–2090. doi: 10.1073/pnas.91.6.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mollick J. A., Chintagumpala M., Cook R. G., Rich R. R. Staphylococcal exotoxin activation of T cells. Role of exotoxin-MHC class II binding affinity and class II isotype. J Immunol. 1991 Jan 15;146(2):463–468. [PubMed] [Google Scholar]
  29. Morris P., Shaman J., Attaya M., Amaya M., Goodman S., Bergman C., Monaco J. J., Mellins E. An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules. Nature. 1994 Apr 7;368(6471):551–554. doi: 10.1038/368551a0. [DOI] [PubMed] [Google Scholar]
  30. Perkins D. L., Wang Y., Ho S. S., Wiens G. R., Seidman J. G., Rimm I. J. Superantigen-induced peripheral tolerance inhibits T cell responses to immunogenic peptides in TCR (beta-chain) transgenic mice. J Immunol. 1993 May 15;150(10):4284–4291. [PubMed] [Google Scholar]
  31. Posnett D. N. Do superantigens play a role in autoimmunity? Semin Immunol. 1993 Feb;5(1):65–72. doi: 10.1006/smim.1993.1009. [DOI] [PubMed] [Google Scholar]
  32. Riberdy J. M., Newcomb J. R., Surman M. J., Barbosa J. A., Cresswell P. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature. 1992 Dec 3;360(6403):474–477. doi: 10.1038/360474a0. [DOI] [PubMed] [Google Scholar]
  33. Ronchese F., Brown M. A., Germain R. N. Structure-function analysis of the Abm12 beta mutation using site-directed mutagenesis and DNA-mediated gene transfer. J Immunol. 1987 Jul 15;139(2):629–638. [PubMed] [Google Scholar]
  34. Schiffenbauer J., Johnson H. M., Butfiloski E. J., Wegrzyn L., Soos J. M. Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8543–8546. doi: 10.1073/pnas.90.18.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scholl P. R., Diez A., Geha R. S. Staphylococcal enterotoxin B and toxic shock syndrome toxin-1 bind to distinct sites on HLA-DR and HLA-DQ molecules. J Immunol. 1989 Oct 15;143(8):2583–2588. [PubMed] [Google Scholar]
  36. Seth A., Stern L. J., Ottenhoff T. H., Engel I., Owen M. J., Lamb J. R., Klausner R. D., Wiley D. C. Binary and ternary complexes between T-cell receptor, class II MHC and superantigen in vitro. Nature. 1994 May 26;369(6478):324–327. doi: 10.1038/369324a0. [DOI] [PubMed] [Google Scholar]
  37. Sette A., Ceman S., Kubo R. T., Sakaguchi K., Appella E., Hunt D. F., Davis T. A., Michel H., Shabanowitz J., Rudersdorf R. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant. Science. 1992 Dec 11;258(5089):1801–1804. doi: 10.1126/science.1465617. [DOI] [PubMed] [Google Scholar]
  38. Stebbins C. C., Loss G. E., Jr, Elias C. G., Chervonsky A., Sant A. J. The requirement for DM in class II-restricted antigen presentation and SDS-stable dimer formation is allele and species dependent. J Exp Med. 1995 Jan 1;181(1):223–234. doi: 10.1084/jem.181.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sun D., Woodland D. L., Coleclough C., Wendling U., Reske K. An MHC class II-expressing T cell clone presenting conventional antigen lacks the ability to present bacterial superantigen. Int Immunol. 1995 Jul;7(7):1079–1085. doi: 10.1093/intimm/7.7.1079. [DOI] [PubMed] [Google Scholar]
  40. Surman S., Deckhut A. M., Blackman M. A., Woodland D. L. MHC-specific recognition of a bacterial superantigen by weakly reactive T cells. J Immunol. 1994 May 15;152(10):4893–4902. [PubMed] [Google Scholar]
  41. Swaminathan S., Furey W., Pletcher J., Sax M. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature. 1992 Oct 29;359(6398):801–806. doi: 10.1038/359801a0. [DOI] [PubMed] [Google Scholar]
  42. Thibodeau J., Cloutier I., Lavoie P. M., Labrecque N., Mourad W., Jardetzky T., Sékaly R. P. Subsets of HLA-DR1 molecules defined by SEB and TSST-1 binding. Science. 1994 Dec 16;266(5192):1874–1878. doi: 10.1126/science.7997881. [DOI] [PubMed] [Google Scholar]
  43. Vignali D. A., Strominger J. L. Amino acid residues that flank core peptide epitopes and the extracellular domains of CD4 modulate differential signaling through the T cell receptor. J Exp Med. 1994 Jun 1;179(6):1945–1956. doi: 10.1084/jem.179.6.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weber D. A., Terrell N. K., Zhang Y., Strindberg G., Martin J., Rudensky A., Braunstein N. S. Requirement for peptide in alloreactive CD4+ T cell recognition of class II MHC molecules. J Immunol. 1995 May 15;154(10):5153–5164. [PubMed] [Google Scholar]
  45. Wen R., Blackman M. A., Woodland D. L. Variable influence of MHC polymorphism on the recognition of bacterial superantigens by T cells. J Immunol. 1995 Aug 15;155(4):1884–1892. [PubMed] [Google Scholar]
  46. Woodland D. L., Smith H. P., Surman S., Le P., Wen R., Blackman M. A. Major histocompatibility complex-specific recognition of Mls-1 is mediated by multiple elements of the T cell receptor. J Exp Med. 1993 Feb 1;177(2):433–442. doi: 10.1084/jem.177.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yagi J., Uchiyama T., Janeway C. A., Jr Stimulator cell type influences the response of T cells to staphylococcal enterotoxins. J Immunol. 1994 Feb 1;152(3):1154–1162. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES