Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Mar 1;183(3):821–827. doi: 10.1084/jem.183.3.821

Thrombin functions as an inflammatory mediator through activation of its receptor

PMCID: PMC2192352  PMID: 8642286

Abstract

A rat model of inflammation was used to investigate the biological effects of thrombin. The thrombin-specific inhibitor Hirulog markedly attentuated the carrageenin-induced edema of the paw of the rat. Injection of thrombin into the paw also produced edema. The effect of thrombin was due to activation of its receptor; a thrombin receptor activating peptide (TRAP) reproduced the effects of thrombin in causing edema. TRAP also increased vascular permeability as demonstrated by extravasation of Evans blue and 125I-labeled serum albumin. The release of bioactive amines played an important role in mediating the TRAP- induced edema; the serotonin/histamine antagonist cryproheptadine and the histamine H2 receptor antagonist cimetidine reduced significantly the edema caused by TRAP. Treatment of rats with the mast cell degranulator 48/80 to deplete these cells of their stores of histamine and serotonin abolished completely the ability of TRAP to produce edema. Histochemical examination confirmed that TRAP treatment led to mast cell degranulation. Thus, it has been possible to demonstrate that thrombin acts as an inflammatory mediator in vivo by activating its receptor, which in turn leads to release of vasoactive amines from mast cells.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antunes E., Mariano M., Cirino G., Levi S., de Nucci G. Pharmacological characterization of polycation-induced rat hind-paw oedema. Br J Pharmacol. 1990 Dec;101(4):986–990. doi: 10.1111/j.1476-5381.1990.tb14193.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bar-Shavit R., Kahn A., Wilner G. D., Fenton J. W., 2nd Monocyte chemotaxis: stimulation by specific exosite region in thrombin. Science. 1983 May 13;220(4598):728–731. doi: 10.1126/science.6836310. [DOI] [PubMed] [Google Scholar]
  3. Beer D. J., Rocklin R. E. Histamine modulation of lymphocyte biology: membrane receptors, signal transduction, and functions. Crit Rev Immunol. 1987;7(1):55–91. [PubMed] [Google Scholar]
  4. Bizios R., Lai L., Fenton J. W., 2nd, Malik A. B. Thrombin-induced chemotaxis and aggregation of neutrophils. J Cell Physiol. 1986 Sep;128(3):485–490. doi: 10.1002/jcp.1041280318. [DOI] [PubMed] [Google Scholar]
  5. Brain S. D., Williams T. J. Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Br J Pharmacol. 1985 Dec;86(4):855–860. doi: 10.1111/j.1476-5381.1985.tb11107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chao B. H., Kalkunte S., Maraganore J. M., Stone S. R. Essential groups in synthetic agonist peptides for activation of the platelet thrombin receptor. Biochemistry. 1992 Jul 14;31(27):6175–6178. doi: 10.1021/bi00142a001. [DOI] [PubMed] [Google Scholar]
  7. Coller B. S., Ward P., Ceruso M., Scudder L. E., Springer K., Kutok J., Prestwich G. D. Thrombin receptor activating peptides: importance of the N-terminal serine and its ionization state as judged by pH dependence, nuclear magnetic resonance spectroscopy, and cleavage by aminopeptidase M. Biochemistry. 1992 Dec 1;31(47):11713–11720. doi: 10.1021/bi00162a007. [DOI] [PubMed] [Google Scholar]
  8. Colotta F., Sciacca F. L., Sironi M., Luini W., Rabiet M. J., Mantovani A. Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin. Am J Pathol. 1994 May;144(5):975–985. [PMC free article] [PubMed] [Google Scholar]
  9. Cuevas P. Lack of effect of compound 48/80 on human umbilical vein endothelium. Anat Embryol (Berl) 1986;175(2):163–166. doi: 10.1007/BF00389592. [DOI] [PubMed] [Google Scholar]
  10. Damas J., Remacle-Volon G. Mast cell amines and the oedema induced by zymosan and carrageenans in rats. Eur J Pharmacol. 1986 Mar 4;121(3):367–376. doi: 10.1016/0014-2999(86)90257-8. [DOI] [PubMed] [Google Scholar]
  11. De Clerck F., Somers Y., Van Gorp L., Xhonneux B. Platelet activation by endogenous 5-hydroxytryptamine and histamine released by mast cell degranulation with compound 48/80 in the rat. Agents Actions. 1983 Feb;13(1):81–87. doi: 10.1007/BF01994287. [DOI] [PubMed] [Google Scholar]
  12. Di Rosa M., Giroud J. P., Willoughby D. A. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol. 1971 May;104(1):15–29. doi: 10.1002/path.1711040103. [DOI] [PubMed] [Google Scholar]
  13. Edwards R. L., Rickles F. R. The role of leukocytes in the activation of blood coagulation. Semin Hematol. 1992 Jul;29(3):202–212. [PubMed] [Google Scholar]
  14. Franciosa J. A., Jordan R. A., Wilen M. M., Leddy C. L. Minoxidil in patients with chronic left heart failure: contrasting hemodynamic and clinical effects in a controlled trial. Circulation. 1984 Jul;70(1):63–68. doi: 10.1161/01.cir.70.1.63. [DOI] [PubMed] [Google Scholar]
  15. Gaboury J. P., Johnston B., Niu X. F., Kubes P. Mechanisms underlying acute mast cell-induced leukocyte rolling and adhesion in vivo. J Immunol. 1995 Jan 15;154(2):804–813. [PubMed] [Google Scholar]
  16. Garcia J. G., Patterson C., Bahler C., Aschner J., Hart C. M., English D. Thrombin receptor activating peptides induce Ca2+ mobilization, barrier dysfunction, prostaglandin synthesis, and platelet-derived growth factor mRNA expression in cultured endothelium. J Cell Physiol. 1993 Sep;156(3):541–549. doi: 10.1002/jcp.1041560313. [DOI] [PubMed] [Google Scholar]
  17. Grandaliano G., Valente A. J., Abboud H. E. A novel biologic activity of thrombin: stimulation of monocyte chemotactic protein production. J Exp Med. 1994 May 1;179(5):1737–1741. doi: 10.1084/jem.179.5.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harker L. A. New antithrombotic strategies for resistant thrombotic processes. J Clin Pharmacol. 1994 Jan;34(1):3–16. doi: 10.1002/j.1552-4604.1994.tb03960.x. [DOI] [PubMed] [Google Scholar]
  19. Jones A., Geczy C. L. Thrombin and factor Xa enhance the production of interleukin-1. Immunology. 1990 Oct;71(2):236–241. [PMC free article] [PubMed] [Google Scholar]
  20. Lorant D. E., Patel K. D., McIntyre T. M., McEver R. P., Prescott S. M., Zimmerman G. A. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol. 1991 Oct;115(1):223–234. doi: 10.1083/jcb.115.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MOVAT H. Z., MORE R. H., WOLOCHOW D. Cellular and intercellular changes after mechanical, chemical or radiation injury of connective tissue. Br J Exp Pathol. 1960 Apr;41:97–104. [PMC free article] [PubMed] [Google Scholar]
  22. Malik A. B., Fenton J. W., 2nd Thrombin-mediated increase in vascular endothelial permeability. Semin Thromb Hemost. 1992;18(2):193–199. doi: 10.1055/s-2007-1002425. [DOI] [PubMed] [Google Scholar]
  23. Maling H. M., Webster M. E., Williams M. A., Saul W., Anderson W., Jr Inflammation induced by histamine, serotonin, bradykinin and compound 48-80 in the rat: antagonists and mechanisms of action. J Pharmacol Exp Ther. 1974 Nov;191(2):300–310. [PubMed] [Google Scholar]
  24. Maraganore J. M., Bourdon P., Jablonski J., Ramachandran K. L., Fenton J. W., 2nd Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin. Biochemistry. 1990 Jul 31;29(30):7095–7101. doi: 10.1021/bi00482a021. [DOI] [PubMed] [Google Scholar]
  25. Moser R., Groscurth P., Fehr J. Promotion of transendothelial neutrophil passage by human thrombin. J Cell Sci. 1990 Aug;96(Pt 4):737–744. doi: 10.1242/jcs.96.4.737. [DOI] [PubMed] [Google Scholar]
  26. Pinheiro J. M., Andersen T. T., Malik A. B. Receptor mechanism of thrombin-mediated pulmonary vasodilation in neonates. Am J Physiol. 1993 Oct;265(4 Pt 1):L355–L359. doi: 10.1152/ajplung.1993.265.4.L355. [DOI] [PubMed] [Google Scholar]
  27. Razin E., Marx G. Thrombin-induced degranulation of cultured bone marrow-derived mast cells. J Immunol. 1984 Dec;133(6):3282–3285. [PubMed] [Google Scholar]
  28. Rowand J. K., Marucha P., Berliner L. J. Hirudin C-terminal fragments inhibit thrombin induced neutrophil chemotaxis. Thromb Haemost. 1992 Mar 2;67(3):289–291. [PubMed] [Google Scholar]
  29. Scarborough R. M., Naughton M. A., Teng W., Hung D. T., Rose J., Vu T. K., Wheaton V. I., Turck C. W., Coughlin S. R. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem. 1992 Jul 5;267(19):13146–13149. [PubMed] [Google Scholar]
  30. Skrzypczak-Jankun E., Carperos V. E., Ravichandran K. G., Tulinsky A., Westbrook M., Maraganore J. M. Structure of the hirugen and hirulog 1 complexes of alpha-thrombin. J Mol Biol. 1991 Oct 20;221(4):1379–1393. [PubMed] [Google Scholar]
  31. Sugama Y., Tiruppathi C., offakidevi K., Andersen T. T., Fenton J. W., 2nd, Malik A. B. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol. 1992 Nov;119(4):935–944. doi: 10.1083/jcb.119.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Toothill V. J., Van Mourik J. A., Niewenhuis H. K., Metzelaar M. J., Pearson J. D. Characterization of the enhanced adhesion of neutrophil leukocytes to thrombin-stimulated endothelial cells. J Immunol. 1990 Jul 1;145(1):283–291. [PubMed] [Google Scholar]
  33. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  34. Williams T. J. Prostaglandin E2, prostaglandin I2 and the vascular changes of inflammation. Br J Pharmacol. 1979 Mar;65(3):517–524. doi: 10.1111/j.1476-5381.1979.tb07860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES