Abstract
Previous studies have demonstrated the presence of myocardial depression in clinical and experimental septic shock. This depression is associated with the presence of a circulating myocardial depressant substance with physical characteristics consistent with cytokines. The present study utilized an in vitro myocardial cell assay to examine the role of various human recombinant cytokines, including tumor necrosis factor (TNF)alpha and interleukin (IL)1beta, in depression of cardiac myocyte contractile function induced by serum from humans with septic shock. The extent and velocity of electrically paced rat cardiac myocytes in tissue culture was quantified by a closed loop video tracking system. Individually, TNF-alpha and IL-1beta each caused significant concentration-dependent depression of maximum extent and peak velocity of myocyte shortening in vitro. In combination, TNF-alpha and IL-1beta induced depression of myocardial cell contractility at substantially lower concentrations consistent with a synergistic effect. Using immunoabsorption, removal of both TNF-alpha and IL-1beta (but not either alone) from the serum of five patients with acute septic shock and marked reversible myocardial depression resulted in elimination of serum myocardial depressant activity. IL-2, -4, -6, -8, - 10, and interferon gamma failed to cause significant cardiac myocyte depression over a wide range of concentrations. These data demonstrate that TNF-alpha and IL-1beta cause depression of myocardial cell contraction in vitro and suggest that these two cytokines act synergistically to cause sepsis-associated myocardial depression in humans.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balligand J. L., Ungureanu D., Kelly R. A., Kobzik L., Pimental D., Michel T., Smith T. W. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest. 1993 May;91(5):2314–2319. doi: 10.1172/JCI116461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benassayag C., Christeff N., Auclair M. C., Vernimmen C., Carli-Vielle C., Nunez E., Carli A. Early released lipid-soluble cardiodepressant factor and elevated oestrogenic substances in human septic shock. Eur J Clin Invest. 1984 Aug;14(4):288–294. doi: 10.1111/j.1365-2362.1984.tb01183.x. [DOI] [PubMed] [Google Scholar]
- Carli A., Auclair M. C., Vernimmen C., Jourdon P. Reversal by calcium of rat heart cell dysfunction induced by human sera in septic shock. Circ Shock. 1979;6(2):147–147. [PubMed] [Google Scholar]
- Casey L. C., Balk R. A., Bone R. C. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med. 1993 Oct 15;119(8):771–778. doi: 10.7326/0003-4819-119-8-199310150-00001. [DOI] [PubMed] [Google Scholar]
- Chung M. K., Gulick T. S., Rotondo R. E., Schreiner G. F., Lange L. G. Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes. Impairment of signal transduction. Circ Res. 1990 Sep;67(3):753–763. doi: 10.1161/01.res.67.3.753. [DOI] [PubMed] [Google Scholar]
- Danner R. L., Elin R. J., Hosseini J. M., Wesley R. A., Reilly J. M., Parillo J. E. Endotoxemia in human septic shock. Chest. 1991 Jan;99(1):169–175. doi: 10.1378/chest.99.1.169. [DOI] [PubMed] [Google Scholar]
- Eichenholz P. W., Eichacker P. Q., Hoffman W. D., Banks S. M., Parrillo J. E., Danner R. L., Natanson C. Tumor necrosis factor challenges in canines: patterns of cardiovascular dysfunction. Am J Physiol. 1992 Sep;263(3 Pt 2):H668–H675. doi: 10.1152/ajpheart.1992.263.3.H668. [DOI] [PubMed] [Google Scholar]
- Ellrodt A. G., Riedinger M. S., Kimchi A., Berman D. S., Maddahi J., Swan H. J., Murata G. H. Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J. 1985 Aug;110(2):402–409. doi: 10.1016/0002-8703(85)90163-2. [DOI] [PubMed] [Google Scholar]
- Evans H. G., Lewis M. J., Shah A. M. Interleukin-1 beta modulates myocardial contraction via dexamethasone sensitive production of nitric oxide. Cardiovasc Res. 1993 Aug;27(8):1486–1490. doi: 10.1093/cvr/27.8.1486. [DOI] [PubMed] [Google Scholar]
- Finkel M. S., Oddis C. V., Jacob T. D., Watkins S. C., Hattler B. G., Simmons R. L. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science. 1992 Jul 17;257(5068):387–389. doi: 10.1126/science.1631560. [DOI] [PubMed] [Google Scholar]
- Girardin E., Grau G. E., Dayer J. M., Roux-Lombard P., Lambert P. H. Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med. 1988 Aug 18;319(7):397–400. doi: 10.1056/NEJM198808183190703. [DOI] [PubMed] [Google Scholar]
- Goldfarb R. D., Nightingale L. M., Kish P., Weber P. B., Loegering D. J. Left ventricular function during lethal and sublethal endotoxemia in swine. Am J Physiol. 1986 Aug;251(2 Pt 2):H364–H373. doi: 10.1152/ajpheart.1986.251.2.H364. [DOI] [PubMed] [Google Scholar]
- Gulick T., Chung M. K., Pieper S. J., Lange L. G., Schreiner G. F. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6753–6757. doi: 10.1073/pnas.86.17.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARARY I., FARLEY B. In vitro studies of single isolated beating heart cells. Science. 1960 Jun 3;131(3414):1674–1675. doi: 10.1126/science.131.3414.1674. [DOI] [PubMed] [Google Scholar]
- Hosenpud J. D. The effects of interleukin 1 on myocardial function and metabolism. Clin Immunol Immunopathol. 1993 Aug;68(2):175–180. doi: 10.1006/clin.1993.1115. [DOI] [PubMed] [Google Scholar]
- Jha P., Jacobs H., Bose D., Wang R., Yang J., Light R. B., Mink S. Effects of E. coli sepsis and myocardial depressant factor on interval-force relations in dog ventricle. Am J Physiol. 1993 May;264(5 Pt 2):H1402–H1410. doi: 10.1152/ajpheart.1993.264.5.H1402. [DOI] [PubMed] [Google Scholar]
- Kinugawa K., Takahashi T., Kohmoto O., Yao A., Aoyagi T., Momomura S., Hirata Y., Serizawa T. Nitric oxide-mediated effects of interleukin-6 on [Ca2+]i and cell contraction in cultured chick ventricular myocytes. Circ Res. 1994 Aug;75(2):285–295. doi: 10.1161/01.res.75.2.285. [DOI] [PubMed] [Google Scholar]
- Lefer A. M., Martin J. Origin of myocardial depressant factor in shock. Am J Physiol. 1970 May;218(5):1423–1427. doi: 10.1152/ajplegacy.1970.218.5.1423. [DOI] [PubMed] [Google Scholar]
- Lovett W. L., Wangensteen S. L., Glenn T. M., Lefer A. M. Presence of a myocardial depressant factor in patients in circulatory shock. Surgery. 1971 Aug;70(2):223–231. [PubMed] [Google Scholar]
- McConn R., Greineder J. K., Wasserman F., Clowes G. H., Jr Is there a humoral factor that depresses ventricular function in sepsis? Circ Shock Suppl. 1979;1:9–22. [PubMed] [Google Scholar]
- Natanson C., Danner R. L., Fink M. P., MacVittie T. J., Walker R. I., Conklin J. J., Parrillo J. E. Cardiovascular performance with E. coli challenges in a canine model of human sepsis. Am J Physiol. 1988 Mar;254(3 Pt 2):H558–H569. doi: 10.1152/ajpheart.1988.254.3.H558. [DOI] [PubMed] [Google Scholar]
- Natanson C., Eichenholz P. W., Danner R. L., Eichacker P. Q., Hoffman W. D., Kuo G. C., Banks S. M., MacVittie T. J., Parrillo J. E. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med. 1989 Mar 1;169(3):823–832. doi: 10.1084/jem.169.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Natanson C., Fink M. P., Ballantyne H. K., MacVittie T. J., Conklin J. J., Parrillo J. E. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest. 1986 Jul;78(1):259–270. doi: 10.1172/JCI112559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okusawa S., Gelfand J. A., Ikejima T., Connolly R. J., Dinarello C. A. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest. 1988 Apr;81(4):1162–1172. doi: 10.1172/JCI113431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker M. M., McCarthy K. E., Ognibene F. P., Parrillo J. E. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest. 1990 Jan;97(1):126–131. doi: 10.1378/chest.97.1.126. [DOI] [PubMed] [Google Scholar]
- Parker M. M., Shelhamer J. H., Bacharach S. L., Green M. V., Natanson C., Frederick T. M., Damske B. A., Parrillo J. E. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med. 1984 Apr;100(4):483–490. doi: 10.7326/0003-4819-100-4-483. [DOI] [PubMed] [Google Scholar]
- Parrillo J. E., Burch C., Shelhamer J. H., Parker M. M., Natanson C., Schuette W. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest. 1985 Oct;76(4):1539–1553. doi: 10.1172/JCI112135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parrillo J. E., Parker M. M., Natanson C., Suffredini A. F., Danner R. L., Cunnion R. E., Ognibene F. P. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med. 1990 Aug 1;113(3):227–242. doi: 10.7326/0003-4819-113-3-227. [DOI] [PubMed] [Google Scholar]
- Parrillo J. E. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993 May 20;328(20):1471–1477. doi: 10.1056/NEJM199305203282008. [DOI] [PubMed] [Google Scholar]
- Reilly J. M., Cunnion R. E., Burch-Whitman C., Parker M. M., Shelhamer J. H., Parrillo J. E. A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest. 1989 May;95(5):1072–1080. doi: 10.1378/chest.95.5.1072. [DOI] [PubMed] [Google Scholar]
- Roberts A. B., Vodovotz Y., Roche N. S., Sporn M. B., Nathan C. F. Role of nitric oxide in antagonistic effects of transforming growth factor-beta and interleukin-1 beta on the beating rate of cultured cardiac myocytes. Mol Endocrinol. 1992 Nov;6(11):1921–1930. doi: 10.1210/mend.6.11.1282674. [DOI] [PubMed] [Google Scholar]
- Salvemini D., Korbut R., Anggård E., Vane J. Immediate release of a nitric oxide-like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2593–2597. doi: 10.1073/pnas.87.7.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuette W. H., Burch C., Roach P. O., Parrillo J. E. Closed loop television tracking of beating heart cells in vitro. Cytometry. 1987 Jan;8(1):101–103. doi: 10.1002/cyto.990080115. [DOI] [PubMed] [Google Scholar]
- Schulz R., Nava E., Moncada S. Induction and potential biological relevance of a Ca(2+)-independent nitric oxide synthase in the myocardium. Br J Pharmacol. 1992 Mar;105(3):575–580. doi: 10.1111/j.1476-5381.1992.tb09021.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waage A., Brandtzaeg P., Halstensen A., Kierulf P., Espevik T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med. 1989 Jan 1;169(1):333–338. doi: 10.1084/jem.169.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waage A., Espevik T. Interleukin 1 potentiates the lethal effect of tumor necrosis factor alpha/cachectin in mice. J Exp Med. 1988 Jun 1;167(6):1987–1992. doi: 10.1084/jem.167.6.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walley K. R., Hebert P. C., Wakai Y., Wilcox P. G., Road J. D., Cooper D. J. Decrease in left ventricular contractility after tumor necrosis factor-alpha infusion in dogs. J Appl Physiol (1985) 1994 Mar;76(3):1060–1067. doi: 10.1152/jappl.1994.76.3.1060. [DOI] [PubMed] [Google Scholar]
- Wangensteen S. L., Geissinger W. T., Lovett W. L., Glenn T. M., Lefer A. M. Relationship between splanchnic blood flow and a myocardial depressant factor in endotoxin shock. Surgery. 1971 Mar;69(3):410–418. [PubMed] [Google Scholar]
- Weinberg J. R., Boyle P., Meager A., Guz A. Lipopolysaccharide, tumor necrosis factor, and interleukin-1 interact to cause hypotension. J Lab Clin Med. 1992 Aug;120(2):205–211. [PubMed] [Google Scholar]
- Weisensee D., Bereiter-Hahn J., Schoeppe W., Löw-Friedrich I. Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmacol. 1993 Jul;15(5):581–587. doi: 10.1016/0192-0561(93)90075-a. [DOI] [PubMed] [Google Scholar]
- Yokoyama T., Vaca L., Rossen R. D., Durante W., Hazarika P., Mann D. L. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest. 1993 Nov;92(5):2303–2312. doi: 10.1172/JCI116834. [DOI] [PMC free article] [PubMed] [Google Scholar]