Abstract
Monocyte recruitment and adherence are important events in inflammatory and vascular diseases. Here, we evaluated the actions of lipoxin A4 (LXA4) and LXB4, a series of lipoxygenase products from arachidonic acid generated by cell-cell interactions, on human monocytes. LXA4 and LXB4 (10(-7) M) each increased monocyte migration in chamber chemotaxis assays and, in migration under agarose, exhibited chemotactic indices similar to those of the chemotactic peptide formyl-methionyl-leucyl- phenylalanine at 10(-10)-10(-8) M and to the chemokine macrophage inflammatory protein-1 alpha (MIP-1 alpha) at 10(-8)-10(-7) M with a rank order of potency: Monocyte chemotactic protein-1 alpha > LXA4 approximately LXB4 approximately MIP-1 alpha. Lipoxins also stimulated monocyte adherence to laminin. In addition, human monocytes rapidly transformed LXA4 and LXB4 to several metabolites. LXB4 (> 80%) was converted within 30 s to new products, in a trend similar to that of LXA4. The novel monocyte-derived LXB4 products were identified as 5-oxo- 6,7-dihydro-LXB4 and 6,7-dihydro-LXB4, indicating a role for site- selective dehydrogenation and reduction. Unlike monocytes, intact polymorphonuclear leukocytes (PMN) did not metabolize LXA4 in significant quantities, and only approximately 12% of exogenous LXB4 was omega-oxidized to 20-OH-LXB4 and 20-COOH-LXB4 by PMN. To determine if lipoxin conversion altered bioactivity, we evaluated the actions of these metabolites on monocytes. Each of the novel products of LXA4 and LXB4 from monocytes, namely oxo- and dihydrolipoxins, were essentially inactive in stimulating monocyte adherence. In contrast, the omega- oxidation products of LXB4 isolated from PMN were equipotent with LXB4 for monocyte adherence. Dehydrogenation of LXA4 in monocytes appears to be carried out by a 15-hydroxyprostaglandin dehydrogenase, which is present in human monocytes as determined by reverse transcription PCR and Western blots. Together, these results provide the first evidence that LXA4 and LXB4 are both potent stimulants for migration and adherence of human monocytes. Moreover, they underscore the importance of the major route of lipoxin metabolism in leukocytes, namely, the rapid dehydrogenation and inactivation carried out by monocytes.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agins A. P., Zipkin R. E., Taffer I. M. Metabolism of cyclooxygenase and lipoxygenase products by 15-prostaglandin dehydrogenase from human HL-60 leukemia cells. Agents Actions. 1987 Aug;21(3-4):397–399. doi: 10.1007/BF01966527. [DOI] [PubMed] [Google Scholar]
- Al-Sumidaie A. M., Jones D. L., Young H. L. Characterisation of the under-agarose method for quantifying migration of highly purified human monocytes. J Immunol Methods. 1984 Dec 14;75(1):129–140. doi: 10.1016/0022-1759(84)90232-1. [DOI] [PubMed] [Google Scholar]
- Boucher J. L., Delaforge M., Mansuy D. Metabolism of lipoxins A4 and B4 and of their all-trans isomers by human leukocytes and rat liver microsomes. Biochem Biophys Res Commun. 1991 May 31;177(1):134–139. doi: 10.1016/0006-291x(91)91958-f. [DOI] [PubMed] [Google Scholar]
- Brady H. R., Persson U., Ballermann B. J., Brenner B. M., Serhan C. N. Leukotrienes stimulate neutrophil adhesion to mesangial cells: modulation with lipoxins. Am J Physiol. 1990 Nov;259(5 Pt 2):F809–F815. doi: 10.1152/ajprenal.1990.259.5.F809. [DOI] [PubMed] [Google Scholar]
- Colgan S. P., Blancquaert A. M., Thrall M. A., Bruyninckx W. J. Defective in vitro motility of polymorphonuclear leukocytes of homozygote and heterozygote Chediak-Higashi cats. Vet Immunol Immunopathol. 1992 Mar;31(3-4):205–227. doi: 10.1016/0165-2427(92)90010-n. [DOI] [PubMed] [Google Scholar]
- Colgan S. P., Serhan C. N., Parkos C. A., Delp-Archer C., Madara J. L. Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J Clin Invest. 1993 Jul;92(1):75–82. doi: 10.1172/JCI116601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denholm E. M., Wolber F. M. A simple method for the purification of human peripheral blood monocytes. A substitute for Sepracell-MN. J Immunol Methods. 1991 Nov 22;144(2):247–251. doi: 10.1016/0022-1759(91)90092-t. [DOI] [PubMed] [Google Scholar]
- Diczfalusy U. Beta-oxidation of eicosanoids. Prog Lipid Res. 1994;33(4):403–428. doi: 10.1016/0163-7827(94)90025-6. [DOI] [PubMed] [Google Scholar]
- Durstin M., Gao J. L., Tiffany H. L., McDermott D., Murphy P. M. Differential expression of members of the N-formylpeptide receptor gene cluster in human phagocytes. Biochem Biophys Res Commun. 1994 May 30;201(1):174–179. doi: 10.1006/bbrc.1994.1685. [DOI] [PubMed] [Google Scholar]
- Ensor C. M., Yang J. Y., Okita R. T., Tai H. H. Cloning and sequence analysis of the cDNA for human placental NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase. J Biol Chem. 1990 Sep 5;265(25):14888–14891. [PubMed] [Google Scholar]
- Falk W., Goodwin R. H., Jr, Leonard E. J. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods. 1980;33(3):239–247. doi: 10.1016/0022-1759(80)90211-2. [DOI] [PubMed] [Google Scholar]
- Fiore S., Maddox J. F., Perez H. D., Serhan C. N. Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med. 1994 Jul 1;180(1):253–260. doi: 10.1084/jem.180.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen H. S. 15-hydroxyprostaglandin dehydrogenase. A review. Prostaglandins. 1976 Oct;12(4):647–679. doi: 10.1016/0090-6980(76)90044-7. [DOI] [PubMed] [Google Scholar]
- Hansson G., Lindgren J. A., Dahlén S. E., Hedqvist P., Samuelsson B. Identification and biological activity of novel omega-oxidized metabolites of leukotriene B4 from human leukocytes. FEBS Lett. 1981 Jul 20;130(1):107–112. doi: 10.1016/0014-5793(81)80676-x. [DOI] [PubMed] [Google Scholar]
- Hla T., Maciag T. Cyclooxygenase gene expression is down-regulated by heparin-binding (acidic fibroblast) growth factor-1 in human endothelial cells. J Biol Chem. 1991 Dec 15;266(35):24059–24063. [PubMed] [Google Scholar]
- Ho H. Y., Wong P. Y. The formation of lipoxins and 6,7-dihydrolipoxins by 5-lipoxygenase and reductase partially purified from potato tubers. Adv Prostaglandin Thromboxane Leukot Res. 1989;19:137–140. [PubMed] [Google Scholar]
- Kamp D. W., Bauer K. D., Knap A., Dunn M. M. Contrasting effects of inflammatory stimuli on neutrophil and monocyte adherence to endothelial cells. J Appl Physiol (1985) 1989 Aug;67(2):556–562. doi: 10.1152/jappl.1989.67.2.556. [DOI] [PubMed] [Google Scholar]
- Kuijpers T. W., Harlan J. M. Monocyte-endothelial interactions: insights and questions. J Lab Clin Med. 1993 Dec;122(6):641–651. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee T. H., Horton C. E., Kyan-Aung U., Haskard D., Crea A. E., Spur B. W. Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Clin Sci (Lond) 1989 Aug;77(2):195–203. doi: 10.1042/cs0770195. [DOI] [PubMed] [Google Scholar]
- Lehr H. A., Olofsson A. M., Carew T. E., Vajkoczy P., von Andrian U. H., Hübner C., Berndt M. C., Steinberg D., Messmer K., Arfors K. E. P-selectin mediates the interaction of circulating leukocytes with platelets and microvascular endothelium in response to oxidized lipoprotein in vivo. Lab Invest. 1994 Sep;71(3):380–386. [PubMed] [Google Scholar]
- Migliorisi G., Folkes E., Pawlowski N., Cramer E. B. In vitro studies of human monocyte migration across endothelium in response to leukotriene B4 and f-Met-Leu-Phe. Am J Pathol. 1987 Apr;127(1):157–167. [PMC free article] [PubMed] [Google Scholar]
- Mizukami Y., Sumimoto H., Isobe R., Minakami S. Omega-hydroxylation of lipoxin B4 by human neutrophil microsomes: identification of omega-hydroxy metabolite of lipoxin B4 and catalysis by leukotriene B4 omega-hydroxylase (cytochrome P-450LTB omega). Biochim Biophys Acta. 1993 May 20;1168(1):87–93. [PubMed] [Google Scholar]
- Mizukami Y., Sumimoto H., Isobe R., Minakami S., Takeshige K. omega-Oxidation of lipoxin B4 by rat liver. Identification of an omega-carboxy metabolite of lipoxin B4. Eur J Biochem. 1994 Sep 15;224(3):959–965. doi: 10.1111/j.1432-1033.1994.00959.x. [DOI] [PubMed] [Google Scholar]
- Palmblad J., Udén A. M., Lindgren J. A., Rådmark O., Hansson G., Malmsten C. L. Effects of novel leukotrienes on neutrophil migration. FEBS Lett. 1982 Jul 19;144(1):81–84. doi: 10.1016/0014-5793(82)80573-5. [DOI] [PubMed] [Google Scholar]
- Papayianni A., Serhan C. N., Phillips M. L., Rennke H. G., Brady H. R. Transcellular biosynthesis of lipoxin A4 during adhesion of platelets and neutrophils in experimental immune complex glomerulonephritis. Kidney Int. 1995 May;47(5):1295–1302. doi: 10.1038/ki.1995.184. [DOI] [PubMed] [Google Scholar]
- Popov G. K., Nekrasov A. S., Khshivo A. L., Pochinskii A. G., Lankin V. Z. Vliianie lipoksina B na kolonieobrazuiushchuiu sposobnost' mononuklearov perifericheskoi krovi cheloveka v usloviiakh diffuzionnoi kamery. Biull Eksp Biol Med. 1989 Jan;107(1):80–83. [PubMed] [Google Scholar]
- Powell W. S., Gravel S., MacLeod R. J., Mills E., Hashefi M. Stimulation of human neutrophils by 5-oxo-6,8,11,14-eicosatetraenoic acid by a mechanism independent of the leukotriene B4 receptor. J Biol Chem. 1993 May 5;268(13):9280–9286. [PubMed] [Google Scholar]
- Powell W. S., Gravelle F., Gravel S. Metabolism of 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid and other 5(S)-hydroxyeicosanoids by a specific dehydrogenase in human polymorphonuclear leukocytes. J Biol Chem. 1992 Sep 25;267(27):19233–19241. [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
- Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
- Serhan C. N., Fiore S., Brezinski D. A., Lynch S. Lipoxin A4 metabolism by differentiated HL-60 cells and human monocytes: conversion to novel 15-oxo and dihydro products. Biochemistry. 1993 Jun 29;32(25):6313–6319. doi: 10.1021/bi00076a002. [DOI] [PubMed] [Google Scholar]
- Serhan C. N. Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim Biophys Acta. 1994 Apr 14;1212(1):1–25. doi: 10.1016/0005-2760(94)90185-6. [DOI] [PubMed] [Google Scholar]
- Soyombo O., Spur B. W., Lee T. H. Effects of lipoxin A4 on chemotaxis and degranulation of human eosinophils stimulated by platelet-activating factor and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Allergy. 1994 Apr;49(4):230–234. doi: 10.1111/j.1398-9995.1994.tb02654.x. [DOI] [PubMed] [Google Scholar]
- Sumimoto H., Isobe R., Mizukami Y., Minakami S. Formation of a novel 20-hydroxylated metabolite of lipoxin A4 by human neutrophil microsomes. FEBS Lett. 1993 Jan 11;315(3):205–210. doi: 10.1016/0014-5793(93)81165-v. [DOI] [PubMed] [Google Scholar]
- Tobias J. W., Bern M. M., Netland P. A., Zetter B. R. Monocyte adhesion to subendothelial components. Blood. 1987 Apr;69(4):1265–1268. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wermuth B., Bohren K. M., Heinemann G., von Wartburg J. P., Gabbay K. H. Human carbonyl reductase. Nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protein. J Biol Chem. 1988 Nov 5;263(31):16185–16188. [PubMed] [Google Scholar]
- Xun C. Q., Tian Z. G., Tai H. H. Stimulation of synthesis de novo of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase in human promyelocytic leukaemia (HL-60) cells by phorbol ester. Biochem J. 1991 Oct 15;279(Pt 2):553–558. doi: 10.1042/bj2790553. [DOI] [PMC free article] [PubMed] [Google Scholar]